Solveeit Logo

Question

Mathematics Question on Differential Calculus

For nNn \in \mathbb{N}, let an=nsin2(1n)cosn,a_n = \sqrt{n} \sin^2\left(\frac{1}{n}\right) \cos n, and bn=nsin(1n2)cosn.b_n = \sqrt{n} \sin\left(\frac{1}{n^2}\right) \cos n. Then

A

The series n=1an\sum_{n=1}^{\infty} a_n converges, but the series n=1bn\sum_{n=1}^{\infty} b_n does not converge.

B

The series n=1an\sum_{n=1}^{\infty} a_n does not converge, but the series n=1bn\sum_{n=1}^{\infty} b_n converges.

C

Both the series n=1an\sum_{n=1}^{\infty} a_n and n=1bn\sum_{n=1}^{\infty} b_n converge.

D

Neither the series n=1an\sum_{n=1}^{\infty} a_n nor the series n=1bn\sum_{n=1}^{\infty} b_n converges.

Answer

Both the series n=1an\sum_{n=1}^{\infty} a_n and n=1bn\sum_{n=1}^{\infty} b_n converge.

Explanation

Solution

The correct option is (C): Both the series n=1an\sum_{n=1}^{\infty} a_n and n=1bn\sum_{n=1}^{\infty} b_n converge.