Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

For nNn \in \mathbb{N}, if cot13+cot14+cot15+cot1n=π4,\cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4}, then nn is equal to ______.

Answer

We know:

cot13+cot14=tan1(3×413+4)=tan1(1217)=tan1(117).\cot^{-1} 3 + \cot^{-1} 4 = \tan^{-1} \left( \frac{3 \times 4 - 1}{3 + 4} \right) = \tan^{-1} \left( \frac{12 - 1}{7} \right) = \tan^{-1} \left( \frac{11}{7} \right).

Adding cot15\cot^{-1} 5:

tan1(117)+cot15=tan1(117×51117+5)=tan1(5571117+5).\tan^{-1} \left( \frac{11}{7} \right) + \cot^{-1} 5 = \tan^{-1} \left( \frac{\frac{11}{7} \times 5 - 1}{\frac{11}{7} + 5} \right) = \tan^{-1} \left( \frac{\frac{55}{7} - 1}{\frac{11}{7} + 5} \right).

Simplify:

=tan1(4846)=tan1(2423).= \tan^{-1} \left( \frac{48}{46} \right) = \tan^{-1} \left( \frac{24}{23} \right).

Adding cot1n\cot^{-1} n:

tan1(2423)+cot1n=π4.\tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}.

Using the identity:

cot1a+cot1b=tan1(a+b1ab),\cot^{-1} a + \cot^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right),

we rewrite:

tan1(2423)+cot1n=π4.\tan^{-1} \left( \frac{24}{23} \right) + \cot^{-1} n = \frac{\pi}{4}.

Simplify further:

tan1(2423)+tan1(1n)=π4.\tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) = \frac{\pi}{4}.

Using the tangent addition formula:

tan(tan1(2423)+tan1(1n))=1.\tan \left( \tan^{-1} \left( \frac{24}{23} \right) + \tan^{-1} \left( \frac{1}{n} \right) \right) = 1.

This implies:

2423+1n12423×1n=1.\frac{\frac{24}{23} + \frac{1}{n}}{1 - \frac{24}{23} \times \frac{1}{n}} = 1.

Simplify the numerator and denominator:

24n+2323nn2423n=1.\frac{\frac{24n + 23}{23n}}{\frac{n - 24}{23n}} = 1.

Cancel 23n23n and solve: 24n+23n24=1.\frac{24n + 23}{n - 24} = 1.

Cross-multiply: 24n+23=n24.24n + 23 = n - 24.

Simplify: 23n=47.23n = 47.

Thus: n=47.n = 47.