Question
Mathematics Question on Trigonometric Identities
For n∈N, if cot−13+cot−14+cot−15+cot−1n=4π, then n is equal to ______.
Answer
We know:
cot−13+cot−14=tan−1(3+43×4−1)=tan−1(712−1)=tan−1(711).
Adding cot−15:
tan−1(711)+cot−15=tan−1(711+5711×5−1)=tan−1(711+5755−1).
Simplify:
=tan−1(4648)=tan−1(2324).
Adding cot−1n:
tan−1(2324)+cot−1n=4π.
Using the identity:
cot−1a+cot−1b=tan−1(1−aba+b),
we rewrite:
tan−1(2324)+cot−1n=4π.
Simplify further:
tan−1(2324)+tan−1(n1)=4π.
Using the tangent addition formula:
tan(tan−1(2324)+tan−1(n1))=1.
This implies:
1−2324×n12324+n1=1.
Simplify the numerator and denominator:
23nn−2423n24n+23=1.
Cancel 23n and solve: n−2424n+23=1.
Cross-multiply: 24n+23=n−24.
Simplify: 23n=47.
Thus: n=47.