Solveeit Logo

Question

Statistics Question on Multivariate Distributions

For n2n \geq 2, let ϵ1,ϵ2,,ϵn\epsilon_1, \epsilon_2, \ldots, \epsilon_n be i.i.d. random variables having the N(0,1)N(0,1) distribution. Consider nn independent random variables Y1,Y2,,YnY_1, Y_2, \ldots, Y_n defined by Yi=β+ϵiY_i = \beta + \epsilon_i, i=1,2,,ni = 1,2, \ldots, n, where βR\beta \in \mathbb{R}. Define
Yˉ=1ni=1nYi\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i
T1=2Yˉn+1T_1 = \frac{2\bar{Y}}{n+1}
T2=1ni=1nYiiT_2 = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{i}
Then which of the following statements is NOT correct?

A

T1T_1 is an unbiased estimator of β\beta

B

T2T_2 is an unbiased estimator of β\beta

C

Var(T1)<Var(T2)\mathrm{Var}(T_1) < \mathrm{Var}(T_2)

D

Var(T1)=Var(T2)\mathrm{Var}(T_1) = \mathrm{Var}(T_2)

Answer

Var(T1)=Var(T2)\mathrm{Var}(T_1) = \mathrm{Var}(T_2)

Explanation

Solution

The correct option is (D): Var(T1)=Var(T2)\mathrm{Var}(T_1) = \mathrm{Var}(T_2)