Solveeit Logo

Question

Statistics Question on Limit Theorems

For n = 1, 2, 3, …, let the joint moment generating function of (X, Yn) be
MX,Yn(t1,t2)=et122(12t2)n2,t1R,t2<12.M_{X,Y_n}(t_1,t_2)=e^{\frac{t^2_1}{2}(1-2t_2)^{-\frac{n}{2}}}, t_1 \in \R,t_2 \lt \frac{1}{2}.
If Tn=nXYn,n1,T_n=\frac{\sqrt{n}X}{\sqrt{Y_n}},n \ge1, then which one of the following statements is true ?

A

The minimum value of n for which Var(Tn) is finite is 2

B

E(T103)=10E(T^3_{10})=10

C

Var(X+Y4=7)Var(X+Y_4=7)

D

limnP(Tn>3)=12π03et22dt\lim\limits_{n \rightarrow \infin}P(|T_n|>3)=1-\frac{\sqrt2}{\sqrt{\pi}}\int^3_0e^{-\frac{t^2}{2}}dt

Answer

limnP(Tn>3)=12π03et22dt\lim\limits_{n \rightarrow \infin}P(|T_n|>3)=1-\frac{\sqrt2}{\sqrt{\pi}}\int^3_0e^{-\frac{t^2}{2}}dt

Explanation

Solution

The correct option is (D) : limnP(Tn>3)=12π03et22dt\lim\limits_{n \rightarrow \infin}P(|T_n|>3)=1-\frac{\sqrt2}{\sqrt{\pi}}\int^3_0e^{-\frac{t^2}{2}}dt.