Solveeit Logo

Question

Question: For \(n > 0,\int_{0}^{2\pi}{\frac{x\sin^{2n}x}{\sin^{2n}x + \cos^{2n}x}dx}\) is equal to...

For n>0,02πxsin2nxsin2nx+cos2nxdxn > 0,\int_{0}^{2\pi}{\frac{x\sin^{2n}x}{\sin^{2n}x + \cos^{2n}x}dx} is equal to

A

π2\pi^{2}

B

2π22\pi^{2}

C

3π23\pi^{2}

D

4π24\pi^{2}

Answer

π2\pi^{2}

Explanation

Solution

I=02πxsin2nxdxsin2nx+cos2nxI = \int_{0}^{2\pi}\frac{x\sin^{2n}xdx}{\sin^{2n}x + \cos^{2n}x} and

I=02π(2πx)sin2n(2πx)dxsin2n(2πx)+cos2n(2πx)I = \int_{0}^{2\pi}\frac{(2\pi - x)\sin^{2n}(2\pi - x)dx}{\sin^{2n}(2\pi - x) + \cos^{2n}(2\pi - x)} [0af(x)=0af(ax)]\left\lbrack \because\int_{0}^{a}{f(x) = \int_{0}^{a}{f(a - x)}} \right\rbrack

2I=2π02πsin2nπsin2nx+cos2nxdx2I = 2\pi\int_{0}^{2\pi}{\frac{\sin^{2n}\pi}{\sin^{2n}x + \cos^{2n}x}dx}

I=π02πsin2nxsin2nx+cos2nxdxI = \pi\int_{0}^{2\pi}\frac{\sin^{2n}x}{\sin^{2n}x + \cos^{2n}x}dxusing 0nTf(x)=n0Tf(x)dx\int_{0}^{nT}{f(x) = n\int_{0}^{T}{f(x)dx}}

I=4π0π/2sin2nxsin2nx+cos2nxdxI = 4\pi\int_{0}^{\pi ⥂ / ⥂ 2}{\frac{\sin^{2n}x}{\sin^{2n}x + \cos^{2n}x}dx}I=4π(π/4)=π2I = 4\pi(\pi ⥂ / ⥂ 4) = \pi^{2}.