Question
Question: For \(n > 0,\int_{0}^{2\pi}{\frac{x\sin^{2n}x}{\sin^{2n}x + \cos^{2n}x}dx}\) is equal to...
For n>0,∫02πsin2nx+cos2nxxsin2nxdx is equal to
A
π2
B
2π2
C
3π2
D
4π2
Answer
π2
Explanation
Solution
I=∫02πsin2nx+cos2nxxsin2nxdx and
I=∫02πsin2n(2π−x)+cos2n(2π−x)(2π−x)sin2n(2π−x)dx [∵∫0af(x)=∫0af(a−x)]
∴ 2I=2π∫02πsin2nx+cos2nxsin2nπdx
⇒ I=π∫02πsin2nx+cos2nxsin2nxdxusing ∫0nTf(x)=n∫0Tf(x)dx
∴ I=4π∫0π⥂/⥂2sin2nx+cos2nxsin2nxdx ⇒ I=4π(π⥂/⥂4)=π2.