Solveeit Logo

Question

Question: For \( n>0 \) , solution of integral \( \int_{0}^{2\pi }{\dfrac{x{{\sin }^{2n}}x}{{{\sin }^{^{2n}}}x...

For n>0n>0 , solution of integral 02πxsin2nxsin2nx+cos2nxdx,\int_{0}^{2\pi }{\dfrac{x{{\sin }^{2n}}x}{{{\sin }^{^{2n}}}x+{{\cos }^{2n}}x}dx,} is equal to
(a) π2{{\pi }^{2}}
(b) π2\dfrac{\pi }{2}
(c) 2π2\pi
(d) π4\dfrac{\pi }{4}

Explanation

Solution

Hint : We have to evaluate the given integral first, let us name it as I. Then, we will use the identity, abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f\left( x \right)dx=}\int\limits_{a}^{b}{f\left( a+b-x \right)dx} , substitute xx as (2πx)\left( 2\pi -x \right) and get a simplified integral. Then, again we will consider this as I and add it to the first integral. Applying the below identities,
sin(2ππ)=sinx,\sin \left( 2\pi -\pi \right)=\operatorname{sinx}, cos(2πx)=cosx,\cos \left( 2\pi -x \right)=\operatorname{cosx}, sin(π2x)=cosx\sin \left( \dfrac{\pi }{2}-x \right)=\operatorname{cosx} and cos(π2x)=sinx\cos \left( \dfrac{\pi }{2}-x \right)=\operatorname{sinx} to get the simplify the result. Also, we will be applying another identity 02af(x)dx=20af(x)dx\int\limits_{0}^{2a}{f\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)dx} , if f(2ax)=f(x)f\left( 2a-x \right)=f\left( x \right) .

Complete step-by-step answer :
In the question, we are asked to find the value of integral 02πxsin2nxsin2πx+cos2πxdx\int\limits_{0}^{2\pi }{\dfrac{x{{\sin }^{2n}}x}{{{\sin }^{2\pi }}x+{{\cos }^{2\pi }}x}dx} , where n>0n>0 .
Now let’s represent the whole integration as ‘I’ so, we get
I=02πxsin2nxsin2πx+cos2πxdxI=\int\limits_{0}^{2\pi }{\dfrac{x{{\sin }^{2n}}x}{{{\sin }^{2\pi }}x+{{\cos }^{2\pi }}x}dx}
Now we will apply identity, abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}dx
Here we will substitute xx as (2πx)\left( 2\pi -x \right) , so we get,
I=02π(2πx)sin2n(2πx)sin2π(2πx)+cos2π(2πx)dxI=\int\limits_{0}^{2\pi }{\dfrac{\left( 2\pi -x \right){{\sin }^{2n}}\left( 2\pi -x \right)}{{{\sin }^{2\pi }}\left( 2\pi -x \right)+{{\cos }^{2\pi }}\left( 2\pi -x \right)}}dx
We know that sin(2πθ)=sinθ\sin \left( 2\pi -\theta \right)=\sin \theta and cos(2πθ)=cosθ\cos \left( 2\pi -\theta \right)=\cos \theta , so we get,
I=02π(2πx)sin2nsin2π+cos2πxdxI=\int\limits_{0}^{2\pi }{\dfrac{\left( 2\pi -x \right){{\sin }^{2n}}}{{{\sin }^{2\pi }}+{{\cos }^{2\pi }}x}dx}
Now we will add this expression of ‘I’ with original expression
I+I=02π(2πx)sin2nx+sin2nxsin2nx+cos2nxdxI+I=\int\limits_{0}^{2\pi }{\dfrac{\left( 2\pi -x \right){{\sin }^{2n}}x+{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}}dx
2I=2π02πsin2nxsin2nx+cos2nxdx2I=2\pi \int\limits_{0}^{2\pi }{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}}dx
I=π02πsin2nxsin2nx+cos2nxdxI=\pi \int\limits_{0}^{2\pi }{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}}dx
Now we can write ‘I’ as, I=π02πsin2nxsin2nx+cos2nxdxI=\pi \int\limits_{0}^{2\pi }{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}}dx because I=2π0πsin2nxsin2nx+cos2nxdxI=2\pi \int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}dx} , by using identity 02af(x)dx=20af(x)dx\int\limits_{0}^{2a}{f\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)dx} , if f(2ax)=f(x)f\left( 2a-x \right)=f\left( x \right) , where f(x)f\left( x \right) is sin2nxsin2nx+cos2nx\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x} and ‘a’ is ‘ π\pi ’.
Now we will further write ‘I’ as,
I=2π02(π2)sin2nxsin2nx+cos2nxdxI=2\pi \int\limits_{0}^{2\left( \dfrac{\pi }{2} \right)}{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}dx}
By using identity 02af(x)dx=20af(x)dx\int\limits_{0}^{2a}{f\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)dx}
If f(2ax)=f(x)f\left( 2a-x \right)=f\left( x \right) where f(x)f\left( x \right) is sin2nxsin2nx+cos2nx\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x} and ‘ aa ’ is π2\dfrac{\pi }{2} .
So, we get I=4π0π2sin2nxsin2nx+cos2nxdxI=4\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}}dx
Now we will once again use the identity
abf(x)dx=abf(a+bx)dx\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}
But here we will put x as (π2x)\left( \dfrac{\pi }{2}-x \right) so we get,
I=4π0π2sin2n(π2x)sin2n(π2x)+cos2n(π2x)dxI=4\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2n}}\left( \dfrac{\pi }{2}-x \right)}{{{\sin }^{2n}}\left( \dfrac{\pi }{2}-x \right)+{{\cos }^{2n}}\left( \dfrac{\pi }{2}-x \right)}dx}
Then we will apply identity
sin(π2θ)=cosθ,cos(π2θ)=sinπ4θ\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ,\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \dfrac{\pi }{4}\theta
So we can write as, I=4π0π2cos2nxsin2nx+cos2nxdxI=4\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}dx}
But we also know that I=4π0π2sin2nxsin2nx+cos2nxdxI=4\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}dx}
So we can write,
I+I=4π0π2cos2nx+sin2nxsin2nx+cos2nxdxI+I=4\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{2n}}x+{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}dx}
2I=4π0π2dx 2I=4π[x]0π2 2I=4π[π20] \begin{aligned} & 2I=4\pi \int\limits_{0}^{\dfrac{\pi }{2}}{dx} \\\ & 2I=4\pi \left[ x \right]_{0}^{\dfrac{\pi }{2}} \\\ & 2I=4\pi \left[ \dfrac{\pi }{2}-0 \right] \\\ \end{aligned}
Hence 2I=4π(π2)I=π22I=4\pi \left( \dfrac{\pi }{2} \right)\Rightarrow I={{\pi }^{2}}
So the value of ‘I’ is π2{{\pi }^{2}} .
The correct option is (a).

Note : Students should be careful while applying identities and also about calculations too. This is because any mistake can end up being a solution getting wrong. The step I+I=02π(2πx)sin2nx+sin2nxsin2nx+cos2nxdxI+I=\int\limits_{0}^{2\pi }{\dfrac{\left( 2\pi -x \right){{\sin }^{2n}}x+{{\sin }^{2n}}x}{{{\sin }^{2n}}x+{{\cos }^{2n}}x}}dx is where most of them tend to make the mistake of forgetting to add I + I on the LHS. So, this makes the whole solution wrong. Some students even go wrong with the identity and take it as sin(π2θ)=sinθ,cos(π2θ)=cosθ\sin \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta ,\cos \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta , but whenever we use angle π2\dfrac{\pi }{2} , the function changes.