Solveeit Logo

Question

Question: For m, n ∈ I<sup>+</sup>, \(f(x) = x - \lbrack x\rbrack\) is equal to...

For m, n ∈ I+, f(x)=x[x]f(x) = x - \lbrack x\rbrack is equal to

A

1, if n < m

B

0, if n > m

C

f(x)={1 if x is a rational number0 if x is an irrational number f(x) = \left\{ \begin{matrix} 1\text{ if x is a rational number} \\ \text{0 if x is an irrational number} \end{matrix} \right.\

D

None of these

Answer

0, if n > m

Explanation

Solution

Writing the given expression in the form

(sinxnxn)(xnxm)(xsinx)m\left( \frac { \sin x ^ { n } } { x ^ { n } } \right) \left( \frac { x ^ { n } } { x ^ { m } } \right) \left( \frac { x } { \sin x } \right) ^ { m }

and noting that the limθ0sinθθ\lim _ { \theta \rightarrow 0 } \frac { \sin \theta } { \theta } = 1, we see that the required limit equals to 1 if n = m, and 0 if n>m