Solveeit Logo

Question

Question: For LCR circuit shown in the figure, value of angular frequency at which power of the circuit become...

For LCR circuit shown in the figure, value of angular frequency at which power of the circuit becomes half of the maximum power may be

L = 12.5 H C = 5 mF R = 75 Ω\Omega

Answer

2 rad/s or 8 rad/s

Explanation

Solution

The power dissipated in an LCR circuit is given by: P=Irms2R=Vrms2Z2RP = I_{rms}^2 R = \frac{V_{rms}^2}{Z^2} R where Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2} is the impedance, XL=ωLX_L = \omega L is the inductive reactance, and XC=1ωCX_C = \frac{1}{\omega C} is the capacitive reactance.

The maximum power (PmaxP_{max}) occurs at resonance, where XL=XCX_L = X_C. At resonance, the impedance is Zmin=RZ_{min} = R. So, Pmax=Vrms2RP_{max} = \frac{V_{rms}^2}{R}.

We are looking for the angular frequencies (ω\omega) at which the power becomes half of the maximum power, i.e., P=12PmaxP = \frac{1}{2} P_{max}. Vrms2RR2+(XLXC)2=12Vrms2R\frac{V_{rms}^2 R}{R^2 + (X_L - X_C)^2} = \frac{1}{2} \frac{V_{rms}^2}{R}

Simplifying the equation: RR2+(XLXC)2=12R\frac{R}{R^2 + (X_L - X_C)^2} = \frac{1}{2R} 2R2=R2+(XLXC)22R^2 = R^2 + (X_L - X_C)^2 R2=(XLXC)2R^2 = (X_L - X_C)^2

Taking the square root of both sides: XLXC=±RX_L - X_C = \pm R Substituting the expressions for XLX_L and XCX_C: ωL1ωC=±R\omega L - \frac{1}{\omega C} = \pm R

This leads to two quadratic equations for ω\omega:

Case 1: ωL1ωC=R\omega L - \frac{1}{\omega C} = R Multiplying by ωC\omega C: ω2LC1=RωC\omega^2 LC - 1 = R \omega C ω2LCRCω1=0\omega^2 LC - R C \omega - 1 = 0

Case 2: ωL1ωC=R\omega L - \frac{1}{\omega C} = -R Multiplying by ωC\omega C: ω2LC1=RωC\omega^2 LC - 1 = -R \omega C ω2LC+RCω1=0\omega^2 LC + R C \omega - 1 = 0

Let's calculate the resonant angular frequency ω0\omega_0 and the term R2L\frac{R}{2L}. Given: L=12.5 HL = 12.5 \text{ H}, C=5 mF=5×103 FC = 5 \text{ mF} = 5 \times 10^{-3} \text{ F}, R=75ΩR = 75 \Omega.

Resonant angular frequency: ω0=1LC=112.5×5×103=162.5×103=10.0625=10.25=4 rad/s\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{12.5 \times 5 \times 10^{-3}}} = \frac{1}{\sqrt{62.5 \times 10^{-3}}} = \frac{1}{\sqrt{0.0625}} = \frac{1}{0.25} = 4 \text{ rad/s}

Calculate R2L\frac{R}{2L}: R2L=752×12.5=7525=3 rad/s\frac{R}{2L} = \frac{75}{2 \times 12.5} = \frac{75}{25} = 3 \text{ rad/s}

The solutions to the quadratic equations ω2LCRCω1=0\omega^2 LC \mp R C \omega - 1 = 0 are given by the formula: ω=±R2L+ω02+(R2L)2\omega = \pm \frac{R}{2L} + \sqrt{\omega_0^2 + \left(\frac{R}{2L}\right)^2} (taking only positive frequencies)

For Case 1 (ωL1ωC=R\omega L - \frac{1}{\omega C} = R), the higher half-power frequency ω2\omega_2 is: ω2=R2L+ω02+(R2L)2\omega_2 = \frac{R}{2L} + \sqrt{\omega_0^2 + \left(\frac{R}{2L}\right)^2} ω2=3+42+32=3+16+9=3+25=3+5=8 rad/s\omega_2 = 3 + \sqrt{4^2 + 3^2} = 3 + \sqrt{16 + 9} = 3 + \sqrt{25} = 3 + 5 = 8 \text{ rad/s}

For Case 2 (ωL1ωC=R\omega L - \frac{1}{\omega C} = -R), the lower half-power frequency ω1\omega_1 is: ω1=R2L+ω02+(R2L)2\omega_1 = -\frac{R}{2L} + \sqrt{\omega_0^2 + \left(\frac{R}{2L}\right)^2} ω1=3+42+32=3+16+9=3+25=3+5=2 rad/s\omega_1 = -3 + \sqrt{4^2 + 3^2} = -3 + \sqrt{16 + 9} = -3 + \sqrt{25} = -3 + 5 = 2 \text{ rad/s}

Thus, the two angular frequencies at which the power of the circuit becomes half of the maximum power are 2 rad/s and 8 rad/s.