Question
Mathematics Question on Inverse Trigonometric Functions
For k ∈ R , let the solution of the equation
cos(sin−1(xcot(tan−1(cos(sin−1)))))=k,0<∣x∣<21
Inverse trigonometric functions take only principal values. If the solutions of the equation x 2 – bx – 5 = 0 are
α21+β21and βα
, then b/k2 is equal to_____.
Answer
The correct answer is 12
cos(sin−1(xcot(tan−1(cos(sin−1)))))=k
⇒ $$\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\sqrt{1 - x^2}\right)\right)\right)\right) = k
⇒ $$\cos\left(\sin^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right)\right) = k
⇒ 1−x21−2x2=k
⇒ 1−x21−2x2=k2
⇒1−2x2
=k2−k2x2
∴ α,β be the roots of x2-(k2-1)/(k2-2) = 0
α21+β21=2(k2−1k2−2)…(1)
and βα=−1....(2)
∴ 2(k2−1k2−2)(−1)=−5
⇒k2=31
and b = S.R
2(k2−1k2−2)(−1)=4
∴k2b=314
= 12