Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

For kR , let the solution of the equation
cos(sin1(xcot(tan1(cos(sin1)))))=k,0<x<12\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k, \quad 0 < |x| < \frac{1}{\sqrt{2}}
Inverse trigonometric functions take only principal values. If the solutions of the equation x 2 – bx – 5 = 0 are
1α2+1β2\frac{1}{α^2}+\frac{1}{β^2} and αβ\frac{α}{β}
, then b/k2 is equal to_____.

Answer

The correct answer is 12
cos(sin1(xcot(tan1(cos(sin1)))))=k\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k
⇒ $$\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\sqrt{1 - x^2}\right)\right)\right)\right) = k
⇒ $$\cos\left(\sin^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right)\right) = k
12x21x2=k\frac{\sqrt{1 - 2x^2}}{\sqrt{1 - x^2}} = k
12x21x2=k2\frac{1 - 2x^2}{1 - x^2} = k^2
12x2⇒ 1-2x^2
=k2k2x2= k^2-k^2x^2
∴ α,β be the roots of x2-(k2-1)/(k2-2) = 0
1α2+1β2=2(k22k21)(1)\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 2\left(\frac{k^2 - 2}{k^2 - 1}\right) \dots (1)
and αβ=1....(2)\frac{α}{β} = -1....(2)
2(k22k21)(1)=52\left(\frac{k^2 - 2}{k^2 - 1}\right)(-1) = -5
k2=13⇒ k^2 = \frac{1}{3}
and b = S.R
2(k22k21)(1)=42\left(\frac{k^2 - 2}{k^2 - 1}\right)( - 1) = 4
bk2=413\therefore \frac{b}{k^2} = \frac{4}{\frac{1}{3}}
= 12