Question
Question: For k =\(\frac{1}{\sqrt{50}}\), the value of a, b, c such that PP¢ = I, where P = \(\begin{bmatrix}...
For k =501, the value of a, b, c such that PP¢ = I, where
P = $\begin{bmatrix} 2/3 & 3k & a \
- 1/3 & - 4k & b \ 2/3 & - 5k & c \end{bmatrix}$is-
A
±5216, ±5213, m321
B
m321, ±5213, ±5216
C
±5213, ±5216, m321
D
None of these
Answer
±5213, ±5216, m321
Explanation
Solution
For PP¢ = 1,
$\begin{bmatrix} 2/3 & 3k & a \
- 1/3 & - 4k & b \ 2/3 & - 5k & c \end{bmatrix}\left[ \begin{array} { c c c } 2 / 3 & - 1 / 3 & 2 / 3 \ 3 \mathrm { k } & - 4 \mathrm { k } & - 5 \mathrm { k } \ \mathrm { a } & \mathrm { b } & \mathrm { c } \end{array} \right]$
= 100010001.Performing matrix multiplication, we have
94+ 9k2 + a2 = 1, 91 + 16k2 + b2 = 1, 94 + 25k2 + c2 = 0
Ž a2 = 450169, b2 = 450256, c2 =45025
Also 94– 15k2 + ac = 0, –92+ 20k2 + bc = 0,
–92 – 12k2 + ab = 0
Ž ab = 450208, bc = –45080, ac = 450−65.Hence a = ± 5213, b =± 5216, c m 321.
Hence (3) is correct answer.