Solveeit Logo

Question

Question: For k =\(\frac{1}{\sqrt{50}}\), the value of a, b, c such that PP¢ = I, where P = \(\begin{bmatrix}...

For k =150\frac{1}{\sqrt{50}}, the value of a, b, c such that PP¢ = I, where

P = $\begin{bmatrix} 2/3 & 3k & a \

  • 1/3 & - 4k & b \ 2/3 & - 5k & c \end{bmatrix}$is-
A

±1652\frac{16}{5\sqrt{2}}, ±1352\frac{13}{5\sqrt{2}}, m132\frac{1}{3\sqrt{2}}

B

m132\frac{1}{3\sqrt{2}}, ±1352\frac{13}{5\sqrt{2}}, ±1652\frac{16}{5\sqrt{2}}

C

±1352\frac{13}{5\sqrt{2}}, ±1652\frac{16}{5\sqrt{2}}, m132\frac{1}{3\sqrt{2}}

D

None of these

Answer

±1352\frac{13}{5\sqrt{2}}, ±1652\frac{16}{5\sqrt{2}}, m132\frac{1}{3\sqrt{2}}

Explanation

Solution

For PP¢ = 1,

$\begin{bmatrix} 2/3 & 3k & a \

  • 1/3 & - 4k & b \ 2/3 & - 5k & c \end{bmatrix} \left[ \begin{array} { c c c } 2 / 3 & - 1 / 3 & 2 / 3 \ 3 \mathrm { k } & - 4 \mathrm { k } & - 5 \mathrm { k } \ \mathrm { a } & \mathrm { b } & \mathrm { c } \end{array} \right]$

= [100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.Performing matrix multiplication, we have

49\frac{4}{9}+ 9k2 + a2 = 1, 19\frac{1}{9} + 16k2 + b2 = 1, 49\frac{4}{9} + 25k2 + c2 = 0

Ž a2 = 169450\frac{169}{450}, b2 = 256450\frac{256}{450}, c2 =25450\frac{25}{450}

Also 49\frac{4}{9}– 15k2 + ac = 0, –29\frac{2}{9}+ 20k2 + bc = 0,

29\frac{2}{9} – 12k2 + ab = 0

Ž ab = 208450\frac{208}{450}, bc = –80450\frac{80}{450}, ac = 65450\frac{- 65}{450}.Hence a = ± 1352\frac{13}{5\sqrt{2}}, b =± 1652\frac{16}{5\sqrt{2}}, c m 132\frac{1}{3\sqrt{2}}.

Hence (3) is correct answer.