Solveeit Logo

Question

Mathematics Question on Bayes' Theorem

For k=1,2,3k=1,2,3 the box BkBk contains kk red balls and (k+1)(k+1) white balls. Let P(B1)=12,P(B2)=13=13P\left(B_{1}\right)=\frac{1}{2}, P\left(B_{2}\right)=\frac{1}{3}=\frac{1}{3} and P(B3)=16.P\left(B_{3}\right)=\frac{1}{6} . A box is selected at random and a ball is drawn from it. If a red ball is drawn, then the probability that it has come from box B2B_{2}, is

A

3578\frac{35}{78}

B

1439\frac{14}{39}

C

1013\frac{10}{13}

D

1213\frac{12}{13}

Answer

1439\frac{14}{39}

Explanation

Solution

In a box, B1=1R,2W;B2=2R,3WB_{1}=1 R, 2 W ; B_{2}=2 R, 3 W
and B3=3R,4WB_{3}=3 R, 4 W Also, given that, P(B1)=12,P(B2)P\left(B_{1}\right)=\frac{1}{2}, P\left(B_{2}\right)
=13P(B3)=16=\frac{1}{3} P\left(B_{3}\right)=\frac{1}{6}
P(B2R)=P(B2)P(RB2)P(B1)P(RB1)+P(B2)P(RB2)+P(B3)P(RB3)\therefore P\left(\frac{B_{2}}{R}\right)=\frac{P\left(B_{2}\right) P\left(\frac{R}{B_{2}}\right)}{P\left(B_{1}\right) P\left(\frac{R}{B_{1}}\right)+P\left(B_{2}\right) P\left(\frac{R}{B_{2}}\right)+P\left(B_{3}\right) P\left(\frac{R}{B_{3}}\right)}
=13×2512×13+13×25+16×37=\frac{\frac{1}{3} \times \frac{2}{5}}{\frac{1}{2} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{5}+\frac{1}{6} \times \frac{3}{7}}
=21516+215+114=\frac{\frac{2}{15}}{\frac{1}{6}+\frac{2}{15}+\frac{1}{14}}
=1439=\frac{14}{39}