Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

For I(x)=sec2x2022sin2022xdx,if I(π4)=21011I(x) = \int \frac{\sec^2 x - 2022}{\sin^{2022} x} \, dx, \quad \text{if } I\left(\frac{\pi}{4}\right) = 2^{1011}, then

A

31010I(π3)I(π6)=03^{1010} \cdot I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0

B

31010I(π6)I(π3)=03^{1010} \cdot I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0

C

31011I(π3)I(π6)=03^{1011} \cdot I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0

D

31011I(π6)I(π3)=03^{1011} \cdot I\left(\frac{\pi}{6}\right) - I\left(\frac{\pi}{3}\right) = 0

Answer

31010I(π3)I(π6)=03^{1010} \cdot I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0

Explanation

Solution

I(x)=sec2x2022sin2022xdxI(x) = \int \frac{\sec^2 x - 2022}{\sin^{2022} x} \, dx

=(sec2xsin2022x2022sin2022x)dx= \int (\sec^2 x \cdot \sin^{-2022} x - 2022 \sin^{-2022} x) \, dx

=sin2022xtanx+2022sin2023xcosxtanxdx2022sin2022xdx+C= \sin^{-2022} x \tan x + \int 2022 \sin^{-2023} x \cos x \tan x \, dx - \int 2022 \sin^{-2022} x \, dx + C

I(x)=sin2022xtanx+cI(x) = \sin^{-2022} x \tan x + c

I(π4)=21011\therefore I\left(\frac{\pi}{4}\right) = 2^{1011}

c=2101121011⇒c=2^{1011}−2^{1011}
c=0⇒c=0

I(π3)=(23)20223I(\frac{\pi}{3}) = (\frac{2}{\sqrt{3}} )^{2022}\sqrt{3}

I(π6)=22022113I\left(\frac{\pi}{6}\right) = 2^{20221}\frac{1}{\sqrt{3}}
So, option (A): 31010I(π3)I(π6)=03^{1010} \cdot I\left(\frac{\pi}{3}\right) - I\left(\frac{\pi}{6}\right) = 0