Question
Mathematics Question on Integration by Partial Fractions
For I(x)=∫sin2022xsec2x−2022dx,if I(4π)=21011, then
A
31010⋅I(3π)−I(6π)=0
B
31010⋅I(6π)−I(3π)=0
C
31011⋅I(3π)−I(6π)=0
D
31011⋅I(6π)−I(3π)=0
Answer
31010⋅I(3π)−I(6π)=0
Explanation
Solution
I(x)=∫sin2022xsec2x−2022dx
=∫(sec2x⋅sin−2022x−2022sin−2022x)dx
=sin−2022xtanx+∫2022sin−2023xcosxtanxdx−∫2022sin−2022xdx+C
I(x)=sin−2022xtanx+c
∴I(4π)=21011
⇒c=21011−21011
⇒c=0
I(3π)=(32)20223
I(6π)=22022131
So, option (A): 31010⋅I(3π)−I(6π)=0