Question
Mathematics Question on Matrices
For I=[1 001], if A=[a cb−a] be such that A2=I, then:
A
1+a2+bc=0
B
1−a2−bc=0
C
1−a2+bc=0
D
1+a2−bc=0
Answer
1−a2−bc=0
Explanation
Solution
The matrix A is given as:
A=[a cb−a].
To compute A2:
A2=[a cb−a]⋅[a cb−a].
A2=[a2+bc ac−acab−abbc+(−a)2]=[a2+bc 00bc+a2].
Since A2=I, we have:
[a2+bc 00bc+a2]=[1 001].
Equating the diagonal elements:
a2+bc=1.
Rewriting this equation:
1−a2−bc=0.
Thus, the correct answer is Option (B).