Question
Mathematics Question on Circle
For i=1,2,3,4, suppose the points(cosθi,secθi) lie on the boundary of a circle,where θi∈[0,6π) are distinct. Then cosθ1 cosθ2 cosθ3 cosθ4 equals
A
21
B
81
C
41
D
21
E
161
Answer
41
Explanation
Solution
Given that:
For i=1,2,3,4,suppose the points (cosθi,secθi) lie on the boundary of a circle [ whereθi∈[0,6π) ]
let general point (cosθ,secθ) and radius is 1.
we can write,
i2.cos2θ+i2sec2θ=1
⇒−cos2θ−cos2θ1=1
⇒−cos2θ−cos2θ−1=0
$$⇒−2cos2θ−1=0
⇒cos2θ=21
⇒cosθ=√21
Therefore product roots: cosθ1 cosθ2 cosθ3 cosθ4=41
So, the correct option is (C) : 41