Solveeit Logo

Question

Mathematics Question on Circle

For i=1,2,3,4i=1,2,3,4, suppose the points(cosθi,secθi)(\cosθi,\secθi) lie on the boundary of a circle,where θi[0,π6)θi∈[0,\frac{π}{6}) are distinct. Then cosθ1 cosθ2 cosθ3 cosθ4\cosθ_1\ \cosθ_2\ \cosθ_3\ \cosθ_4 equals

A

12\dfrac{1}{2}

B

18\dfrac{1}{8}

C

14\dfrac{1}{4}

D

12\dfrac{1}{2}

E

116\dfrac{1}{16}

Answer

14\dfrac{1}{4}

Explanation

Solution

Given that:
For i=1,2,3,4i=1,2,3,4,suppose the points (cosθi,secθi)(\cosθi,\secθi) lie on the boundary of a circle [ whereθi[0,π6) θi∈[0,\frac{π}{6}) ]
let general point (cosθ,secθ)(\cos θ,\sec θ) and radius is 11.
we can write,
i2.cos2θ+i2sec2θ=1i^2.\cos^2θ + i^2\sec^2θ = 1
cos2θ1cos2θ=1⇒-\cos^2θ - \dfrac{1}{ \cos^2θ} = 1

cos2θcos2θ1=0⇒-\cos^2θ − \cos^2θ - 1 = 0

$$2cos2θ1=0⇒-2\cos^2θ - 1 = 0

cos2θ=12⇒\cos^2θ =\dfrac{1}{2}

cosθ=12⇒\cosθ =\dfrac{1}{√2}
Therefore product roots: cosθ1 cosθ2 cosθ3 cosθ4=14\cos θ_1\ \cos θ_2\ \cos θ_3\ \cos θ_4 = \dfrac{1}{4}
So, the correct option is (C) : 14\frac{1}{4}