Solveeit Logo

Question

Question: For how many value (s) of x in the closed interval [–4, –1] is the matrix \(\begin{bmatrix} 3 & - 1 ...

For how many value (s) of x in the closed interval [–4, –1] is the matrix [31+x231x+2x+312]\begin{bmatrix} 3 & - 1 + x & 2 \\ 3 & - 1 & x + 2 \\ x + 3 & - 1 & 2 \end{bmatrix}singular

A

2

B

0

C

3

D

1

Answer

1

Explanation

Solution

3x1231x+2x+312=0\left| \begin{array} { c c c } 3 & x - 1 & 2 \\ 3 & - 1 & x + 2 \\ x + 3 & - 1 & 2 \end{array} \right| = 0 0xx31x+2x+312=0\left| \begin{matrix} 0 & x & - x \\ 3 & - 1 & x + 2 \\ x + 3 & - 1 & 2 \end{matrix} \right| = 0 [R1R1R2]\lbrack R_{1} \rightarrow R_{1} - R_{2}\rbrack, $\left| \begin{matrix} 0 & x & - x \

  • x & 0 & x \ x + 3 & - 1 & 2 \end{matrix} \right| = 0 \lbrack R_{2} \rightarrow R_{2} - R_{3}\rbrack$

0xx31x+2x+312=0\left| \begin{matrix} 0 & x & - x \\ 3 & - 1 & x + 2 \\ x + 3 & - 1 & 2 \end{matrix} \right| = 0 [C2C2+C3]\lbrack C_{2} \rightarrow C_{2} + C_{3}\rbrack

x[(x)x(x+3)]=0- x\lbrack( - x) - x(x + 3)\rbrack = 0x(x2+4x)=0x(x^{2} + 4x) = 0x=0,4x = 0, - 4

Hence only one value of x in closed interval [–4,–1] i.e. x=4x = - 4