Solveeit Logo

Question

Question: For He ion, the only incorrect combination is: Column \[1\]| Column \[2\]| Column \[3\] ---...

For He ion, the only incorrect combination is:

Column 11Column 22Column 33
1s1s Orbital(i)  ψn,l,ml  a(Za0)32e(Zra0)\;{\psi _{n,l,{m_l}}}\;a{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{ - \left( {\dfrac{{{Z_r}}}{{{a_0}}}} \right)}}(P)
2s2s Orbital(ii) one radial node(Q) Probability density at nucleus
2pz2{p_z} Orbital(iii) ψn,l,ml  a(Za0)52re(Zra0)cosθ{\psi _{n,l,{m_l}}}\;a{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{5}{2}}}r{e^{ - \left( {\dfrac{{{Z_r}}}{{{a_0}}}} \right)}}\cos \theta (R) Probability density is maximum at nucleus
3dz23d_z^2 Orbital(iv) xy-plane is a nodal plane(S) Energy needed to excite an electron from n=2n = 2 state to n=4n = 4 state is 2732\dfrac{{27}}{{32}} times the energy needed to excite an electron from n=2n = 2 state to n=6n = 6 state.

A. (I) (iii) (R)
B. (II) (ii) (Q)
C. (I) (i) (S)
D. (I) (i) (R)

Explanation

Solution

Helium ion is nothing but the one electron is given away form one s-orbital out of two and positive charge is acquired as we know that one electron is present in hydrogen is the same way only one electron will remain in the helium ion, hence it will behave as atom with only one electron.

Complete Step by step answer: As we know that hydrogen is the simplest atom containing only one electron. n,l,ml{\rm{n,}}\,{\rm{l,}}\,{{\rm{m}}_{\rm{l}}} resembles the principle quantum number, azimuthal quantum number and magnetic quantum number respectively. Radial node is measured from n,l{\rm{n,}}\,{\rm{l}} values. The probability density of finding the electron is never 100%100\% because electrons are having Heisenberg uncertainty principle.
We will see the column one by one
In column 1, we will determine the radial nodes of the given orbitals by the formula
radialnode=nl1{\rm{radial}}\,{\rm{node = }}\,{\rm{n - l - 1}}
For 1s{\rm{1s}}orbital
radialnode=101=0\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,1{\rm{ - 0 - 1 = }}\,0
For 2s{\rm{2s}}orbital
radialnode=201=1\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,2{\rm{ - 0 - 1 = }}\,1
For 3pz{\rm{3}}{{\rm{p}}_z}orbital
radialnode=311=1\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,{\rm{3 - 1 - 1 = }}\,{\rm{1}}
For 3dz2{\rm{3d}}_z^2orbital
radialnode=321=0\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,3{\rm{ - 2 - 1 = }}\,0
Now, we could see from above explanation, the radial nodes is one for 2s{\rm{2s}} and 3pz{\rm{3}}{{\rm{p}}_z} orbitals but the graph for 2s{\rm{2s}}orbital is shown as
By the formula

{{\rm{R}}_{{\rm{2,0}}}}{\rm{ = }}\dfrac{{\rm{1}}}{{\sqrt {{\rm{32\pi }}} }}\dfrac{{\rm{1}}}{{{\rm{a}}_{\rm{0}}^{\dfrac{{\rm{3}}}{{\rm{2}}}}}}\left( {{\rm{2 - }}\dfrac{{\rm{r}}}{{{{\rm{a}}_{\rm{0}}}}}} \right){{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{\rm{r}}}{{{\rm{2}}{{\rm{a}}_{\rm{0}}}}}} \right)}\\\ {\rm{y = }}\left( {{\rm{2 - x}}} \right)\,{{\rm{e}}^{{\rm{ - x}}}} \end{array}$$ Appling above formula we have values along $${\rm{x}}$$and $${\rm{y}}$$ direction as- ![](https://www.vedantu.com/question-sets/b0183889-0e31-4ff3-ba00-d726971f53584689720370289836757.png) And the graph for $${\rm{3}}{{\rm{p}}_z}$$orbital is shown as- ![](https://www.vedantu.com/question-sets/4b18bddc-d186-402a-b84f-d7e75fa6fc918860758595690429417.png) **Therefore, our correct option is option (A) (I) (iii) (R).** **Note:** $${{\rm{\varphi }}_{{\rm{n,l,}}{{\rm{m}}_{\rm{l}}}}}{\rm{a}}{\left( {\dfrac{{\rm{Z}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)^{\dfrac{{\rm{3}}}{{\rm{2}}}}}{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}$$ belongs to orbital $${\rm{1s}}$$ where principle quantum number can be calculated by $${{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}$$ and azimuthal quantum number is calculated by minimum power of $${\rm{r}}$$ or maximum power of $${\rm{Sin\theta Cos\theta }}$$. Energy of one-dimensional box is calculated by – $${{\rm{E}}_{\rm{x}}}{\rm{ = }}\dfrac{{{\rm{n}}_{\rm{x}}^{\rm{2}}{{\rm{h}}^{\rm{2}}}}}{{{\rm{8m}}{{\rm{l}}^{\rm{2}}}}}$$ Helium ion is nothing but the one electron is given away form one s-orbital out of two and positive charge is acquired as we know that one electron is present in hydrogen is the same way only one electron will remain in the helium ion, hence it will behave as atom with only one electron.