Solveeit Logo

Question

Question: For first order parallel reaction \({{\text{k}}_1}\) and \({{\text{k}}_2}\) are \({\text{4}}\) and \...

For first order parallel reaction k1{{\text{k}}_1} and k2{{\text{k}}_2} are 4{\text{4}} and 2 min12{\text{ mi}}{{\text{n}}^{ - 1}} respectively at 300 K300{\text{ K}}. If the activation energies for the formation of B and C are respectively 30,000{\text{30,000}} and 38,314 joule/mol38,314{\text{ joule/mol}} respectively.
The temperature at which B and C will be obtained in equimolar ratio is:

(A) 757.48 K757.48{\text{ K}}
(B) 378.74 K378.74{\text{ K}}
(C) 600 K600{\text{ K}}
(D) None of these

Explanation

Solution

The minimum amount of energy that the reacting species must possess to undergo a specific reaction is known as the activation energy. The relation between the temperature, rate constant and activation energy is given by the Arrhenius equation.

Complete step by step solution:
We know the expression for the relationship between the rate constant of a first order reaction and the activation energy is as follows:
k=A×e(EaR×T)k = A \times {e^{\left( { - \dfrac{{{E_a}}}{{R \times T}}} \right)}}
Where kk is the rate constant of a first order reaction,
AA is the pre-exponential factor,
Ea{E_a} is the energy of activation,
RR is the universal gas constant,
TT is the temperature.
Thus,
k1=A1×e(Ea1R×T){k_1} = {A_1} \times {e^{\left( { - \dfrac{{{E_{a1}}}}{{R \times T}}} \right)}} …… (1)
And,
k2=A2×e(Ea2R×T){k_2} = {A_2} \times {e^{\left( { - \dfrac{{{E_{a2}}}}{{R \times T}}} \right)}} …… (2)
Thus,
k1k2=A1A2×e(Ea2Ea1)R×T\dfrac{{{k_1}}}{{{k_2}}} = \dfrac{{{A_1}}}{{{A_2}}} \times {e^{\dfrac{{\left( {{E_{a2}} - {E_{a1}}} \right)}}{{R \times T}}}}
We are given that k1{{\text{k}}_1} and k2{{\text{k}}_2} are 4{\text{4}} and 2 min12{\text{ mi}}{{\text{n}}^{ - 1}} respectively, the energies of activation are 30,000{\text{30,000}} and 38,314 joule/mol38,314{\text{ joule/mol}} respectively. Substitute 8.314 J K1 mol18.314{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} for the universal gas constant, 300 K300{\text{ K}} for the temperature. Thus,
42=A1A2×e(3831430000)8.314×300\dfrac{4}{2} = \dfrac{{{A_1}}}{{{A_2}}} \times {e^{\dfrac{{\left( {38314 - 30000} \right)}}{{8.314 \times 300}}}}
Taking log on both the sides of the equation, we get,
log2=log(A1A2)+83148.314×2.303×300\log 2 = \log \left( {\dfrac{{{A_1}}}{{{A_2}}}} \right) + \dfrac{{8314}}{{8.314 \times 2.303 \times 300}}
log(A1A2)=log21.4473\Rightarrow \log \left( {\dfrac{{{A_1}}}{{{A_2}}}} \right) = \log 2 - 1.4473
log(A1A2)=log21.4473\Rightarrow \log \left( {\dfrac{{{A_1}}}{{{A_2}}}} \right) = \log 2 - 1.4473
log(A1A2)=0.30101.4473\Rightarrow \log \left( {\dfrac{{{A_1}}}{{{A_2}}}} \right) = 0.3010 - 1.4473
log(A1A2)=1.1463\Rightarrow \log \left( {\dfrac{{{A_1}}}{{{A_2}}}} \right) = - 1.1463
We are given an equimolar ratio. For an equimolar ratio,
k1=k2{k_1} = {k_2} …… (3)
Substitute equation (1) and equation (2) in equation (3). Thus,
A1×e(Ea1R×T)=A2×e(Ea2R×T){A_1} \times {e^{\left( { - \dfrac{{{E_{a1}}}}{{R \times T}}} \right)}} = {A_2} \times {e^{\left( { - \dfrac{{{E_{a2}}}}{{R \times T}}} \right)}}
A1A2=e(Ea2Ea1R×T)\Rightarrow \dfrac{{{A_1}}}{{{A_2}}} = {e^{\left( { - \dfrac{{{E_{a2}} - {E_{a1}}}}{{R \times T}}} \right)}}
Taking log on both the sides of the equation, we get,
logA1A2=Ea2Ea12.303×R×T\log \dfrac{{{A_1}}}{{{A_2}}} = - \dfrac{{{E_{a2}} - {E_{a1}}}}{{2.303 \times R \times T}}
We are given that the energies of activation are 30,000{\text{30,000}} and 38,314 joule/mol38,314{\text{ joule/mol}} respectively. Substitute 8.314 J K1 mol18.314{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} for the universal gas constant. Thus,
1.1463=(3831430000) J mol12.303×8.314 J K1 mol1×T- 1.1463 = - \dfrac{{\left( {38314 - 30000} \right){\text{ J mo}}{{\text{l}}^{ - 1}}}}{{2.303 \times 8.314{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} \times T}}
T=83142.303×8.314×1.1463\Rightarrow T = - \dfrac{{{\text{8314}}}}{{2.303 \times 8.314 \times - 1.1463}}
T=378.74 K\Rightarrow T = 378.74{\text{ K}}
Thus, the temperature at which B and C will be obtained in equimolar ratio is 378.74 K378.74{\text{ K}}.

Thus, the correct option is (B) 378.74 K378.74{\text{ K}}.

Note: The reactions in which a substance decomposes or reacts in one or more ways are known as parallel reactions. The parallel reactions are also known as side reactions. The reaction that depends on the concentration of one reactant only is known as the first order reaction.