Solveeit Logo

Question

Mathematics Question on Application of Integrals

For f(x)=ex4e2xdx,f(x) = \int \frac{e^x}{\sqrt{4 - e^{2x}}} \, dx, if the point (0,π2)\left(0, \frac{\pi}{2}\right) satisfies y=f(x)y = f(x), then the constant of integration of the given integral is:

A

π2\frac{\pi}{2}

B

π3\frac{\pi}{3}

C

π6\frac{\pi}{6}

D

0

Answer

π2\frac{\pi}{2}

Explanation

Solution

The integral is:

f(x)=ex4e2xdxf(x)=\int\frac{e^{x}}{\sqrt{4-e^{2x}}}dx

We simplify the denominator:

4e2x=(2)2(ex)2\sqrt{4-e^{2x}}=\sqrt{(2)^{2}-(e^{x})^{2}}

This suggests a substitution of the form ex=2 sin θe^{x}=2~sin~\theta, where e2x=4 sin2θe^{2x}=4~sin^{2}\theta. Then:

dx=2 cos θexdθ=2 cos θ2 sin θdθ=cot θ dθdx=\frac{2~cos~\theta}{e^{x}}d\theta=\frac{2~cos~\theta}{2~sin~\theta}d\theta=cot~\theta~d\theta

Substituting into the integral:

f(x)=2 sin θ44 sin2θcot θ dθf(x)=\int\frac{2~sin~\theta}{\sqrt{4-4~sin^{2}\theta}}cot~\theta~d\theta

Using 44 sin2θ=2 cos θ\sqrt{4-4~sin^{2}\theta}=2~cos~\theta:

f(x)=2 sin θ2 cos θcot θ dθ=dθf(x)=\int\frac{2~sin~\theta}{2~cos~\theta}cot~\theta~d\theta=\int d\theta

Thus:

f(x)=θ+Cf(x)=\theta+C

Returning to ex=2 sin θe^{x}=2~sin~\theta, we have sin θ=ex2sin~\theta=\frac{e^{x}}{2} so θ=arcsin(ex2)\theta=arcsin(\frac{e^{x}}{2}). Hence:

f(x)=arcsin(ex2)+Cf(x)=arcsin(\frac{e^{x}}{2})+C

To determine CC, we use the given point (0,π2)(0,\frac{\pi}{2}), which satisfies f(x)f(x):

f(0)=arcsin(e02)+C=arcsin(12)+Cf(0)=arcsin(\frac{e^{0}}{2})+C=arcsin(\frac{1}{2})+C

From trigonometry, arcsin(12)=π6arcsin(\frac{1}{2})=\frac{\pi}{6}. Therefore:

f(0)=π6+C=π2f(0)=\frac{\pi}{6}+C=\frac{\pi}{2}

Solving for CC:

C=π2π6=3π6π6=π3C=\frac{\pi}{2}-\frac{\pi}{6}=\frac{3\pi}{6}-\frac{\pi}{6}=\frac{\pi}{3}

Thus, the constant of integration is:

π3\frac{\pi}{3}