Question
Mathematics Question on Application of Integrals
For f(x)=∫4−e2xexdx, if the point (0,2π) satisfies y=f(x), then the constant of integration of the given integral is:
2π
3π
6π
0
2π
Solution
The integral is:
f(x)=∫4−e2xexdx
We simplify the denominator:
4−e2x=(2)2−(ex)2
This suggests a substitution of the form ex=2 sin θ, where e2x=4 sin2θ. Then:
dx=ex2 cos θdθ=2 sin θ2 cos θdθ=cot θ dθ
Substituting into the integral:
f(x)=∫4−4 sin2θ2 sin θcot θ dθ
Using 4−4 sin2θ=2 cos θ:
f(x)=∫2 cos θ2 sin θcot θ dθ=∫dθ
Thus:
f(x)=θ+C
Returning to ex=2 sin θ, we have sin θ=2ex so θ=arcsin(2ex). Hence:
f(x)=arcsin(2ex)+C
To determine C, we use the given point (0,2π), which satisfies f(x):
f(0)=arcsin(2e0)+C=arcsin(21)+C
From trigonometry, arcsin(21)=6π. Therefore:
f(0)=6π+C=2π
Solving for C:
C=2π−6π=63π−6π=3π
Thus, the constant of integration is:
3π