Solveeit Logo

Question

Question: For every pair of continuous function \[f,g:\left[ {0,{\text{ }}1} \right] \to R\] such that \[max\\...

For every pair of continuous function f,g:[0, 1]Rf,g:\left[ {0,{\text{ }}1} \right] \to R such that maxf(x):x[0,1]=maxg(x):x[0,1]max\\{ f\left( x \right):x \in \left[ {0,1} \right]\\} = max\\{ g\left( x \right):x \in \left[ {0,1} \right]\\} , the correct statement(s) is (are):

A. [f(c)]2+3f(c)=[g(c)]2+3g(c){\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)for somec[0, 1]c \in \left[ {0,{\text{ }}1} \right].

B. [f(c)]2+f(c)=[g(c)]2+3g(c){\left[ {f\left( c \right)} \right]^2} + f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)for somec[0, 1]c \in \left[ {0,{\text{ }}1} \right].

C. [f(c)]2+3f(c)=[g(c)]2+g(c){\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + g\left( c \right) for somec[0, 1]c \in \left[ {0,{\text{ }}1} \right].

D.[f(c)]2 = [g(c)]2{\left[ {f\left( c \right)} \right]^2}{\text{ }} = {\text{ }}{\left[ {g\left( c \right)} \right]^2}for somec[0, 1]c \in \left[ {0,{\text{ }}1} \right].

Explanation

Solution

For any function f(x)f\left( x \right) if at some point p function is positive and any other point q function is negative that is f(p)>0f\left( p \right) > 0 and f(q)<0f\left( q \right) < 0 then there is at least one root of f(x)f\left( x \right) between p and q.

Complete step-by-step answer:
We are given that for every pair of continuous function f,g:[0, 1]Rf,g:\left[ {0,{\text{ }}1} \right] \to R such thatmaxf(x):x[0,1]=maxg(x):x[0,1]max\\{ f\left( x \right):x \in \left[ {0,1} \right]\\} = max\\{ g\left( x \right):x \in \left[ {0,1} \right]\\} .

Let us take one function at a time. First we take f(x)f\left( x \right).
Let the value of which the function f(x)f\left( x \right) is maximum by c1{c_1}. This is shown as –
maxf(x):x[0,1]max\\{ f\left( x \right):x \in \left[ {0,1} \right]\\} =f(c1)f\left( {{c_1}} \right)

Similarly, we take the second function g(x)g\left( x \right) and we get,
Let the value of which the function g(x)g\left( x \right) is maximum by c2{c_2}. This is shown as –
maxg(x):x[0,1]=g(c2)max\\{ g\left( x \right):x \in \left[ {0,1} \right]\\} = g({c_2})

Now let us take one other function h(x)h\left( x \right) as shown –
h(x)h\left( x \right)=f(x)f\left( x \right)-g(x)g\left( x \right)
Let us find Function h(x)h\left( x \right) for x=c1x = {c_1}. We get,
h(c1)h\left( {{c_1}} \right)=f(c1)f\left( {{c_1}} \right)-g(c1)g\left( {{c_1}} \right)
Since, f(c1)f\left( {{c_1}} \right) is greater than g(c1)g\left( {{c_1}} \right) because at x=c1x = {c_1} we get maximum value of f(x)f\left( x \right) whereas in case of g(x)g\left( x \right) at x=c1x = {c_1} we do not get the maximum value. Therefore,
h(c1)>0h\left( {{c_1}} \right) > 0

Let us find Function h(x)h\left( x \right) for x=c2x = {c_2}. We get,
h(c2)h\left( {{c_2}} \right)=f(c2)f\left( {{c_2}} \right)-g(c2)g\left( {{c_2}} \right)
Since, g(c2)g\left( {{c_2}} \right) is greater than f(c2)f\left( {{c_2}} \right) because at x=c2x = {c_2} we get maximum value of g(x)g\left( x \right) whereas in case of f(x)f\left( x \right) at x=c2x = {c_2} we do not get the maximum value. Therefore,
h(c2)<0h\left( {{c_2}} \right) < 0
Therefore, for any arbitrary cc which lie in between c1{c_1} and c2{c_2} h(x)h\left( x \right) has a root that is –
h(c)=0h\left( c \right) = 0 For c[0, 1]c \in \left[ {0,{\text{ }}1} \right].
Which implies,
f(c)g(c)=0f(c) - g\left( c \right) = 0 For c[0, 1]c \in \left[ {0,{\text{ }}1} \right]
f(c)=g(c)\Rightarrow f(c) = g\left( c \right)…………. (1)
Now, squaring both sides we get –
[f(c)]2=[g(c)]2\Rightarrow {[f(c)]^2} = {[g\left( c \right)]^2}…….. (2)
Multiplying equation (1) by 3 we get,
3f(c)=3g(c)\Rightarrow 3f(c) = 3g\left( c \right)………… (3)
Adding both the equations (2) and (3) we get,
[f(c)]2+3f(c)=[g(c)]2+3g(c){\left[ {f\left( c \right)} \right]^2} + {\text{3}}f\left( c \right) = {\left[ {g\left( c \right)} \right]^2} + 3g\left( c \right)…….. (4)
Therefore, from equations (2) and (4) we get that options (A) and (D) are correct options.

So, the correct answer is “Option A and D”.

Note: When we use the property that for any function f(x)f\left( x \right) if at some point p function is positive and any other point q function is negative that is f(p)>0f\left( p \right) > 0 and f(q)<0f\left( q \right) < 0 then there is at least one root of f(x)f\left( x \right) between p and q. It should be noted that the number of roots lying between p and q are atleast one and not equal to one.