Solveeit Logo

Question

Question: For each \[x \in R\], let \[\left[ x \right]\] be the greatest integer less than or equal to \[x\]. ...

For each xRx \in R, let [x]\left[ x \right] be the greatest integer less than or equal to xx. Then, limx0x([x]+x)sin[x]x\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}} is equal to
A. 00
B. sin1\sin 1
C. sin1 - \sin 1
D. 11

Explanation

Solution

Here in this question, we have to determine the given limit of a function having the greatest integer [x][x] which is less than or equal to xx. here the limit is left hand limit i.e., in the form of limxaf(x)\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) , in given function which ‘x’ approaches ‘0’ through values less than ‘0’. Then we apply the limit to the function and simplify by using the properties of limit function, we get the required solution.

Complete step by step answer:
A left-hand limit means the limit of a function as it approaches from the left-hand side.
The left hand limit of function f(x)f\left( x \right) as x'x' tends to a'a' exists and is equal to l2{l_2}, if as x'x' approaches a'a' through values less than a'a'. i.e.,
limxaf(x)=l2\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_2}
Where, a{a^ - } means (ah)\left( {a - h} \right) and h0h \to 0. Therefore, f(ah)f\left( {a - h} \right).
Consider the given limit function,
limx0x([x]+x)sin[x]x\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}}------(1)
Take some substitution for limxaf(x)\mathop {\lim }\limits_{x \to {a^ - }} f(x) put x=ahx = a - h and change the limit as xax \to {a^ - } by h0h \to 0, then Equation (1) becomes
limh0(ah)([(ah)]+(ah))sin[(ah)](ah)\Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {a - h} \right)\left( {\left[ {\left( {a - h} \right)} \right] + \left| {\left( {a - h} \right)} \right|} \right)\sin \left[ {\left( {a - h} \right)} \right]}}{{\left| {\left( {a - h} \right)} \right|}}
But a=0a = 0, then
limh0(0h)([(0h)]+(0h))sin[(0h)](0h)\Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {0 - h} \right)\left( {\left[ {\left( {0 - h} \right)} \right] + \left| {\left( {0 - h} \right)} \right|} \right)\sin \left[ {\left( {0 - h} \right)} \right]}}{{\left| {\left( {0 - h} \right)} \right|}}
limh0h([h]+(h))sin[h]h\Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( {\left[ { - h} \right] + \left| {\left( { - h} \right)} \right|} \right)\sin \left[ { - h} \right]}}{{\left| { - h} \right|}}
As we know the greatest integer of [h]\left[ { - h} \right] is -1 i.e., [h]=1\left[ { - h} \right] = - 1 and the absolute value of h=h\left| { - h} \right| = h, then on substituting we have
limh0h(1+h)sin(1)h\Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( { - 1 + h} \right)\sin \left( { - 1} \right)}}{h}
On cancelling the like terms hh on both numerator and denominator, we have
limh0(1+h)sin(1)1\Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - 1 + h} \right)\sin \left( { - 1} \right)}}{1}
By the product and quotient property of limit of a function, then
limh0(1h)limh0(sin1)limh0(1)\Rightarrow \,\,\,\dfrac{{\mathop {\lim }\limits_{h \to 0} \left( {1 - h} \right) \cdot \mathop {\lim }\limits_{h \to 0} \left( { - \sin 1} \right)}}{{\mathop {\lim }\limits_{h \to 0} \left( 1 \right)}}
On applying a limit value, we get
(10)(sin1)1\Rightarrow \,\,\,\dfrac{{\left( {1 - 0} \right) \cdot \left( { - \sin 1} \right)}}{1}
sin1\Rightarrow \,\,\, - \sin 1
Hence, the left hand limit value of limx0x([x]+x)sin[x]x=sin1\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}} = - \sin 1.

Therefore, option C is correct.

Note: Remember the function [x]\left[ x \right] is a greatest integer function for any real function. The function rounds -off the real number down to the integer less than the number. And the product and quotient properties of limits are defined as: The function f(x)f\left( x \right) and g(x)g\left( x \right) is are non-zero finite values, given that
limxa(f(x)g(x))=limxaf(x)limxag(x)\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)
limxaf(x)g(x)=limxaf(x)limxag(x)\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}} and
Also limxakf(a)=klimxaf(a)\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right).