Solveeit Logo

Question

Multivariable Calculus Question on Functions of Two or Three Real Variables

For each t ∈ (0, 1), the surface Pt in R3\R^3 is defined by
P_t = \left\\{(x, y, z) : (x^2 + y^2 )z = 1, t^2 ≤ x^2 + y^2 ≤ 1\right\\}.
Let at ∈ R be the surface area of Pt. Then

A

at=t2x2+y211+4x2(x2+y2)4+4y2(x2+y2)4dx dya_t=\iint\limits_{t^2\le x^2 + y^2\le 1}\sqrt{1+\frac{4x^2}{(x^2+y^2)^4}+\frac{4y^2}{(x^2+y^2)^4}}dx\ dy

B

at=t2x2+y211+4x2(x2+y2)2+4y2(x2+y2)2dx dya_t=\iint\limits_{t^2\le x^2 + y^2\le 1}\sqrt{1+\frac{4x^2}{(x^2+y^2)^2}+\frac{4y^2}{(x^2+y^2)^2}}dx\ dy

C

the limitlimt0+at\lim\limits_ {t→0^+}a_t does NOT exist

D

the limitlimt0+at\lim\limits_ {t→0^+}a_t exist

Answer

at=t2x2+y211+4x2(x2+y2)4+4y2(x2+y2)4dx dya_t=\iint\limits_{t^2\le x^2 + y^2\le 1}\sqrt{1+\frac{4x^2}{(x^2+y^2)^4}+\frac{4y^2}{(x^2+y^2)^4}}dx\ dy

Explanation

Solution

The correct option is (A) : at=t2x2+y211+4x2(x2+y2)4+4y2(x2+y2)4dx dya_t=\iint\limits_{t^2\le x^2 + y^2\le 1}\sqrt{1+\frac{4x^2}{(x^2+y^2)^4}+\frac{4y^2}{(x^2+y^2)^4}}dx\ dy and (C) : the limitlimt0+at\lim\limits_ {t→0^+}a_t does NOT exist.