Solveeit Logo

Question

Question: For each real x such that –1 \< x \< 1 . Let A (x) denote the matrix (1 – x)<sup>–1/2</sup>\(\begin{...

For each real x such that –1 < x < 1 . Let A (x) denote the matrix (1 – x)–1/2$\begin{pmatrix} 1 & - x \

  • x & 1 \end{pmatrix}andA(x)A(y)=kA(z)wherex,yIˉR,1\<x,y\<1andz=and A(x) A(y) = k A(z) where x, y Ī R, –1 \< x, y \< 1 and z =\frac{x + y}{1 + xy}$ then k is –
A

11+xy\frac{1}{\sqrt{1 + xy}}

B

x1+xy\frac{x}{\sqrt{1 + xy}}

C

1+xy\sqrt{1 + xy}

D

1+xyx\frac{\sqrt{1 + xy}}{x}

Answer

1+xy\sqrt{1 + xy}

Explanation

Solution

A(x) A(y) = (1 – y)–1/2 $\begin{pmatrix} 1 & - x \

  • x & 1 \end{pmatrix} \begin{pmatrix} 1 & - y \
  • y & 1 \end{pmatrix}$

= (1 – x – y + xy)–1/2 $\begin{bmatrix} 1 + xy & - (x + y) \

  • (x + y) & 1 + xy \end{bmatrix}$

= 1+xy1(x+y)+(xy)\frac { 1 + x y } { \sqrt { 1 - ( x + y ) + ( x y ) } } [1(x+y)1+xy(x+y)1+xy1]\begin{bmatrix} 1 & \frac{- (x + y)}{1 + xy} \\ \frac{- (x + y)}{1 + xy} & 1 \end{bmatrix}

=[1(x+y)1+xy(x+y)1+xy1]\begin{bmatrix} 1 & \frac{- (x + y)}{1 + xy} \\ \frac{- (x + y)}{1 + xy} & 1 \end{bmatrix}

= 1+xy\sqrt{1 + xy} A(z)

Ž k = 1+xy\sqrt{1 + xy}.