Question
Question: For each real x such that –1 \< x \< 1 . Let A (x) denote the matrix (1 – x)<sup>–1/2</sup>\(\begin{...
For each real x such that –1 < x < 1 . Let A (x) denote the matrix (1 – x)–1/2$\begin{pmatrix} 1 & - x \
- x & 1 \end{pmatrix}andA(x)A(y)=kA(z)wherex,yIˉR,–1\<x,y\<1andz=\frac{x + y}{1 + xy}$ then k is –
A
1+xy1
B
1+xyx
C
1+xy
D
x1+xy
Answer
1+xy
Explanation
Solution
A(x) A(y) = (1 – y)–1/2 $\begin{pmatrix} 1 & - x \
- x & 1 \end{pmatrix}\begin{pmatrix} 1 & - y \
- y & 1 \end{pmatrix}$
= (1 – x – y + xy)–1/2 $\begin{bmatrix} 1 + xy & - (x + y) \
- (x + y) & 1 + xy \end{bmatrix}$
= 1−(x+y)+(xy)1+xy [11+xy−(x+y)1+xy−(x+y)1]
=[11+xy−(x+y)1+xy−(x+y)1]
= 1+xy A(z)
Ž k = 1+xy.