Solveeit Logo

Question

Question: For each positive integer \(n\) , let \({y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \ri...

For each positive integer nn , let yn=1n(n+1)(n+2)...(n+n)1n{y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}} . For xRx \in \mathbb{R} , let [x]\left[ x \right] be the greatest integer function less than or equal to xx , if limnyn=L\mathop {\lim }\limits_{n \to \infty } {y_n} = L , then the value of [L]\left[ L \right] is _______ .

Explanation

Solution

In this question, we are given a sequence yn=1n(n+1)(n+2)...(n+n)1n{y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}} , whose limit is LL at nn \to \infty .
First, we’ll take nn common and then, take ln on both sides. Then we will convert the summation into integration and finally integrate it to get the value of LL .
For a series in summation can be written as (a+1)+(a+2)+...(a+n)=r=1n(a+r)\left( {a + 1} \right) + \left( {a + 2} \right) + ...\left( {a + n} \right) = \sum\limits_{r = 1}^n {\left( {a + r} \right)} .
For a given summation of the form limn[1nr=1n(1+rn)]\mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\left( {1 + \dfrac{r}{n}} \right)} } \right] can be converted into integration as 01(1+x)dx\int\limits_0^1 {\left( {1 + x} \right)dx} by putting rn=x\dfrac{r}{n} = x .
On differentiating with respect to rr , we get, dx=1ndx = \dfrac{1}{n} .
Lower limit =d(1)dn=0 = \dfrac{{d\left( 1 \right)}}{{dn}} = 0 and upper limit =d(n)dn=1 = \dfrac{{d\left( n \right)}}{{dn}} = 1 .

Complete answer:
Given series yn=1n(n+1)(n+2)...(n+n)1n{y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}} and it is also given that limnyn=L\mathop {\lim }\limits_{n \to \infty } {y_n} = L .
To find the value of [L]\left[ L \right] .
First, taking nn common, we get.
yn=1n[nn(1+1n)(1+2n)...(1+nn)]1n yn=nn[(1+1n)(1+2n)...(1+nn)]1n yn=[(1+1n)(1+2n)...(1+nn)]1n \begin{gathered} {y_n} = \dfrac{1}{n}{\left[ {{n^n}\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\\ {y_n} = \dfrac{n}{n}{\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\\ {y_n} = {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\\ \end{gathered}
Now, taking ln\ln on both sides, we get,

\ln {y_n} = \ln {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\\ \ln {y_n} = \dfrac{1}{n}\left[ {\ln \left( {1 + \dfrac{1}{n}} \right) + \ln \left( {1 + \dfrac{2}{n}} \right) + ...\ln \left( {1 + \dfrac{n}{n}} \right)} \right] \\\ \end{gathered} $$ which can be written as, $\ln {y_n} = \dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} $ . Now, taking $\mathop {\lim }\limits_{n \to \infty } $ on both sides, we get, $$\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} } \right]$$ . Now, we will convert it into integration as explained above, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \int\limits_0^1 {\ln \left( {1 + x} \right)dx} $ . Now, integrating with respect to $x$ , we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{1}{{1 + x}} \cdot xdx} $ Adding and subtracting $1$ on the numerator, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{{1 + x - 1}}{{1 + x}}dx} $ , which can be written as $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {1 - \dfrac{1}{{1 + x}}dx} $ i.e., $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \left[ {x - \ln (1 + x)} \right]_0^1$ . Finally, applying limits, we get, $\begin{gathered} \mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {1 \cdot \ln 2 - 0} \right] - \left[ {1 - \ln 2 - 0} \right] \\\ \mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 2 - 1 + \ln 2 = 2\ln 2 - 1 \\\ \mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - 1 \\\ \end{gathered} $ Now, $1$ can be written as $\ln e$ , $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - \ln e$ . We know that, $\ln a - \ln b = \ln \dfrac{a}{b}$ , so using this property, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \dfrac{4}{e}$ . Now, we have that, $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , hence, replacing it, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \left( {\mathop {\lim }\limits_{n \to \infty } {y_n}} \right) = \ln L$ . Thus, $\ln L = \ln \dfrac{4}{e}$ , i.e., $L = \dfrac{4}{e}$ , whose values is approximately equal to $L = \dfrac{4}{{2.71}} = 1.47$ . Hence, the value for $\left[ L \right] = 1$ . **Note:** Properties of $\ln $ , which are $\ln {a^b} = b\ln a$ and $\ln a - \ln b = \ln \dfrac{a}{b}$ has to be kept in mind. Since, $\ln e = 1$ as the base for natural log is $e$ , so, we can replace $1$ by $\ln e$ . Value of $e = 2.718281828459045235602874713527$ , but while solving, we can round it to $100$ .