Solveeit Logo

Question

Mathematics Question on Differential equations

For each of the exercises given below, verify that the given function (implicit or explicit)
is a solution of the corresponding differential equation.

i) y=aex+bex+x2:xd2ydx2+2dydxxy+x22=0y=ae^x+be^{-x}+x^2: x\frac{d^2y}{dx^2}+2\frac{dy}{dx}-xy+x^2-2=0

ii) y=ex(acosx+bsinx):d2ydx22dydx+2y=0y=e^x(a \cos x+ b \sin x):\frac{d^2y}{dx^2}-2\frac{dy}{dx}+2y=0

iii) y=xsin3x:d2ydx2+9y6cos3x=0y= x \sin 3x:\frac{d^2y}{dx^2}+9y-6\cos3x=0

iv) x2=2y2logy:(x2+y2)dydxxy=0x^2=2y^2\log y:(x^2+y^2)\frac{dy}{dx}-xy=0

Answer

(i) y=aex+bex+x2y=ae^x+be^{-x}+x^2

Differentiating both sides with respect to x, we get:

dydx=addx(ex)+bddx(ex)+ddx(x2)\frac{dy}{dx}=a\frac{d}{dx}(e^x)+b\frac{d}{dx}(e^{-x})+\frac{d}{dx}(x^2)

dydx=aexbex+2x\Rightarrow \frac{dy}{dx}=ae^x-be^{-x}+2x

Again, differentiating both sides with respect to x we get:

d2ydx2=aex+bex+2\frac{d^2y}{dx^2}=ae^x+be^{-x}+2

Now ,on substituting the values of dydx\frac{dy}{dx} andd2ydx2\frac{d^2y}{dx^2} in the differential equation, we get:

L.H.S.

xd2ydx2\frac{d^2y}{dx^2}+2dydx\frac{dy}{dx}-xy+x2-2

=x(αexe^x+bexe^{-x}+2)+2(αexe^x-bexe^{-x}+2x)-x(αexe^x+bexe^{-x}+x2)+x2-2

=(αxexe^x+bxexe^{-x}+2x)+(2αexe^x-2bexe^{-x}+4x)-(αxexe^x+bxexe^{-x}+x3)+x2-2

=2αexe^x-2bexe^{-x}+x2+6x-2

≠0

⇒L.H.S.≠R.H.S.

Hence the given function is not a solution of the corresponding differential equation.

(ii) y=y=ex(acosx+bsinx)=aexcosx+bexsinxy=e^x(a \cos x+ b \sin x)=ae^x\cos x+be^x\sin x

Differentiating both sides with respect to x, we get:

dydx\frac{dy}{dx}=α.ddx\frac{d}{dx}(exe^x cosx)+b.ddx\frac{d}{dx}(exe^x sinx)

dydx\frac{dy}{dx}=α(exe^x cosx-ex sinx)+b.(exe^x sinx+exe^x cosx)

dydx\frac{dy}{dx}=(α+b)exe^x cosx+(b-α)exe^x sinx

Again, differentiating both sides with respect to x, we get:

d2ydx2\frac{d^2y}{dx^2}=(α+b).ddx\frac{d}{dx}(exe^x cosx)+(b-α)ddx\frac{d}{dx}(exe^x sinx)

d2ydx2\Rightarrow \frac{d^2y}{dx^2}=(α+b).[exe^x cosx-ex sinx]+(b-α)[exe^x sinx+ex cosx]

d2ydx2=ex\Rightarrow \frac{d^2y}{dx^2}=e^x[(α+b)(cosx-sinx)+(b-α)(sinx+cosx)]

\Rightarrow d2ydx2\frac{d^2y}{dx^2}=exe^x[αcosx-αsinx+bcosx-bsinx+bsinx+bcosx-αsinx-αcosx]

d2ydx2\Rightarrow \frac{d^2y}{dx^2}=[2ex2e^x(bcosx-αsinx)]

Now ,on substituting the values of d2y/dx2 and dydx\frac{dy}{dx} in the L.H.S. of the given differential equation, we get:

d2ydx2+2dydx\frac{d^2y}{dx^2}+2\frac{dy}{dx}+2y

=2ex2e^x(bcosx-αsinx)-2ex[(α+b)cosx+(b-α)sinx]+2ex(αcosx+bsinx)

=exe^x[(2bcosx-2αsinx)-(2αcosx+2bsinx)-(2bsinx-2αsinx)+(2αcosx+2bsinx)]

=exe^x[(2b-2α-2b-2α)cosx]+ex[(-2α-2b+2a+2b)sinx]

=0

Hence, the given function is a solution of the corresponding differential equation.

(iii) y=xsin3x

Differentiating both sides with respect to x, we get:

dydx=ddx\frac{dy}{dx}=\frac{d}{dx}(xsin3x)=sin3x+x.cos3x.3

dydx\Rightarrow \frac{dy}{dx}=sin3x+3xcos3x

Again, differentiating both sides with respect to x,we get:

d2ydx2=ddx\frac{d^2y}{dx^2}=\frac{d}{dx}(sin3x)+3ddx\frac{d}{dx}(xcos3x)

d2ydx2\Rightarrow \frac{d^2y}{dx^2}=3cos3x+3[cos3x+x(-sin3x).3]

d2ydx2\Rightarrow \frac{d^2y}{dx^2}=6cos3x-9xsin3x

Substituting the value of d2ydx2\frac{d^2y}{dx^2} in the L.H.S. of the given differential equation, we get:

d2ydx2\frac{d^2y}{dx^2}2+9y-6cos3x

=(6.cos3x-9xsin3x)+9xsin3x-6cos3x

=0

Hence,the given function is a solution of the corresponding differential equation.

(iv)x2=2y2logy

Differentiating both sides with respect to x,we get:

2x=2.dDx\frac{d}{Dx}=[y2log y]

\Rightarrow x=[2y.logy.dydx+y2.1y\frac{dy}{dx}+y^2.\frac{1}{y}.dydx\frac{dy}{dx}]

x=dydx\Rightarrow x=\frac{dy}{dx}(2ylogy+y)

dydx=xy(1+2logy)\Rightarrow \frac{dy}{dx}=\frac{x}{y(1+2logy)}

Substituting the value of dydx\frac{dy}{dx} in the L.H.S. of the given differential equation,we get:

(x2+y2)dydxxy(x^2+y^2)\frac{dy}{dx}-xy

=(2y2logy+y2).xy(1+2logy)xy(2y^2\log y+y^2).\frac{x}{y(1+2\log y)}-xy

=y2(1+2logy).xy(1+2logy)xyy^2(1+2\log y).\frac{x}{y(1+2 log y)}-xy

=xy-xy

=0

Hence,the given function is a solution of the corresponding differential equation.