Question
Mathematics Question on Differential equations
For each of the exercises given below, verify that the given function (implicit or explicit)
is a solution of the corresponding differential equation.
i) y=aex+be−x+x2:xdx2d2y+2dxdy−xy+x2−2=0
ii) y=ex(acosx+bsinx):dx2d2y−2dxdy+2y=0
iii) y=xsin3x:dx2d2y+9y−6cos3x=0
iv) x2=2y2logy:(x2+y2)dxdy−xy=0
(i) y=aex+be−x+x2
Differentiating both sides with respect to x, we get:
dxdy=adxd(ex)+bdxd(e−x)+dxd(x2)
⇒dxdy=aex−be−x+2x
Again, differentiating both sides with respect to x we get:
dx2d2y=aex+be−x+2
Now ,on substituting the values of dxdy anddx2d2y in the differential equation, we get:
L.H.S.
xdx2d2y+2dxdy-xy+x2-2
=x(αex+be−x+2)+2(αex-be−x+2x)-x(αex+be−x+x2)+x2-2
=(αxex+bxe−x+2x)+(2αex-2be−x+4x)-(αxex+bxe−x+x3)+x2-2
=2αex-2be−x+x2+6x-2
≠0
⇒L.H.S.≠R.H.S.
Hence the given function is not a solution of the corresponding differential equation.
(ii) y=y=ex(acosx+bsinx)=aexcosx+bexsinx
Differentiating both sides with respect to x, we get:
dxdy=α.dxd(ex cosx)+b.dxd(ex sinx)
⇒dxdy=α(ex cosx-ex sinx)+b.(ex sinx+ex cosx)
⇒dxdy=(α+b)ex cosx+(b-α)ex sinx
Again, differentiating both sides with respect to x, we get:
dx2d2y=(α+b).dxd(ex cosx)+(b-α)dxd(ex sinx)
⇒dx2d2y=(α+b).[ex cosx-ex sinx]+(b-α)[ex sinx+ex cosx]
⇒dx2d2y=ex[(α+b)(cosx-sinx)+(b-α)(sinx+cosx)]
⇒ dx2d2y=ex[αcosx-αsinx+bcosx-bsinx+bsinx+bcosx-αsinx-αcosx]
⇒dx2d2y=[2ex(bcosx-αsinx)]
Now ,on substituting the values of d2y/dx2 and dxdy in the L.H.S. of the given differential equation, we get:
dx2d2y+2dxdy+2y
=2ex(bcosx-αsinx)-2ex[(α+b)cosx+(b-α)sinx]+2ex(αcosx+bsinx)
=ex[(2bcosx-2αsinx)-(2αcosx+2bsinx)-(2bsinx-2αsinx)+(2αcosx+2bsinx)]
=ex[(2b-2α-2b-2α)cosx]+ex[(-2α-2b+2a+2b)sinx]
=0
Hence, the given function is a solution of the corresponding differential equation.
(iii) y=xsin3x
Differentiating both sides with respect to x, we get:
dxdy=dxd(xsin3x)=sin3x+x.cos3x.3
⇒dxdy=sin3x+3xcos3x
Again, differentiating both sides with respect to x,we get:
dx2d2y=dxd(sin3x)+3dxd(xcos3x)
⇒dx2d2y=3cos3x+3[cos3x+x(-sin3x).3]
⇒dx2d2y=6cos3x-9xsin3x
Substituting the value of dx2d2y in the L.H.S. of the given differential equation, we get:
dx2d2y2+9y-6cos3x
=(6.cos3x-9xsin3x)+9xsin3x-6cos3x
=0
Hence,the given function is a solution of the corresponding differential equation.
(iv)x2=2y2logy
Differentiating both sides with respect to x,we get:
2x=2.Dxd=[y2log y]
⇒ x=[2y.logy.dxdy+y2.y1.dxdy]
⇒x=dxdy(2ylogy+y)
⇒dxdy=y(1+2logy)x
Substituting the value of dxdy in the L.H.S. of the given differential equation,we get:
(x2+y2)dxdy−xy
=(2y2logy+y2).y(1+2logy)x−xy
=y2(1+2logy).y(1+2logy)x−xy
=xy-xy
=0
Hence,the given function is a solution of the corresponding differential equation.