Solveeit Logo

Question

Question: For certain chemical reaction $t_{75\%}$ is 1.5 times of its $t_{50\%}$. Order of the reaction is n....

For certain chemical reaction t75%t_{75\%} is 1.5 times of its t50%t_{50\%}. Order of the reaction is n. For some other reaction t75%t_{75\%} is twice of its t50%t_{50\%}. Order of the second reaction is m. Value of (n + m) is _______.

Answer

1

Explanation

Solution

For a chemical reaction of order n, the relationship between t75%t_{75\%} and t50%t_{50\%} depends on the order.

For a zero-order reaction (n=0), the integrated rate law is [A]t=[A]0kt[A]_t = [A]_0 - kt.

t50%t_{50\%} is the time when [A]t=[A]0/2[A]_t = [A]_0/2.

[A]0/2=[A]0kt50%    t50%=[A]02k[A]_0/2 = [A]_0 - kt_{50\%} \implies t_{50\%} = \frac{[A]_0}{2k}.

t75%t_{75\%} is the time when [A]t=[A]0/4[A]_t = [A]_0/4.

[A]0/4=[A]0kt75%    t75%=3[A]04k[A]_0/4 = [A]_0 - kt_{75\%} \implies t_{75\%} = \frac{3[A]_0}{4k}.

The ratio t75%t50%=3[A]0/(4k)[A]0/(2k)=32=1.5\frac{t_{75\%}}{t_{50\%}} = \frac{3[A]_0/(4k)}{[A]_0/(2k)} = \frac{3}{2} = 1.5.

So, for a zero-order reaction, t75%=1.5×t50%t_{75\%} = 1.5 \times t_{50\%}.

For a first-order reaction (n=1), the integrated rate law is ln([A]t)=ln([A]0)kt\ln([A]_t) = \ln([A]_0) - kt.

t50%t_{50\%} is the time when [A]t=[A]0/2[A]_t = [A]_0/2.

ln([A]0/2)=ln([A]0)kt50%    ln(1/2)=kt50%    ln2=kt50%    t50%=ln2k\ln([A]_0/2) = \ln([A]_0) - kt_{50\%} \implies \ln(1/2) = -kt_{50\%} \implies -\ln 2 = -kt_{50\%} \implies t_{50\%} = \frac{\ln 2}{k}.

t75%t_{75\%} is the time when [A]t=[A]0/4[A]_t = [A]_0/4.

ln([A]0/4)=ln([A]0)kt75%    ln(1/4)=kt75%    2ln2=kt75%    t75%=2ln2k\ln([A]_0/4) = \ln([A]_0) - kt_{75\%} \implies \ln(1/4) = -kt_{75\%} \implies -2\ln 2 = -kt_{75\%} \implies t_{75\%} = \frac{2\ln 2}{k}.

The ratio t75%t50%=2ln2/kln2/k=2\frac{t_{75\%}}{t_{50\%}} = \frac{2\ln 2/k}{\ln 2/k} = 2.

So, for a first-order reaction, t75%=2×t50%t_{75\%} = 2 \times t_{50\%}.

For a second-order reaction (n=2), the integrated rate law is 1[A]t=1[A]0+kt\frac{1}{[A]_t} = \frac{1}{[A]_0} + kt.

t50%t_{50\%} is the time when [A]t=[A]0/2[A]_t = [A]_0/2.

1[A]0/2=1[A]0+kt50%    2[A]0=1[A]0+kt50%    kt50%=1[A]0    t50%=1k[A]0\frac{1}{[A]_0/2} = \frac{1}{[A]_0} + kt_{50\%} \implies \frac{2}{[A]_0} = \frac{1}{[A]_0} + kt_{50\%} \implies kt_{50\%} = \frac{1}{[A]_0} \implies t_{50\%} = \frac{1}{k[A]_0}.

t75%t_{75\%} is the time when [A]t=[A]0/4[A]_t = [A]_0/4.

1[A]0/4=1[A]0+kt75%    4[A]0=1[A]0+kt75%    kt75%=3[A]0    t75%=3k[A]0\frac{1}{[A]_0/4} = \frac{1}{[A]_0} + kt_{75\%} \implies \frac{4}{[A]_0} = \frac{1}{[A]_0} + kt_{75\%} \implies kt_{75\%} = \frac{3}{[A]_0} \implies t_{75\%} = \frac{3}{k[A]_0}.

The ratio t75%t50%=3/(k[A]0)1/(k[A]0)=3\frac{t_{75\%}}{t_{50\%}} = \frac{3/(k[A]_0)}{1/(k[A]_0)} = 3.

So, for a second-order reaction, t75%=3×t50%t_{75\%} = 3 \times t_{50\%}.

For the first reaction, t75%=1.5×t50%t_{75\%} = 1.5 \times t_{50\%}. This matches the relationship for a zero-order reaction. Therefore, the order n = 0.

For the second reaction, t75%=2×t50%t_{75\%} = 2 \times t_{50\%}. This matches the relationship for a first-order reaction. Therefore, the order m = 1.

The value of (n + m) is 0 + 1 = 1.