Solveeit Logo

Question

Mathematics Question on Differential equations

For c'c' is the arbitrary constant, the solution of the differential equation (x2+2y2)dxxydy=0(x^2 + 2y^2)dx - xy\,dy= 0 is

A

x2+y2=x4c2x^{2} +y^{2} = x^{4} c^{2}

B

x2y2=x2c2x^{2} -y^{2} = x^{2} c^{2}

C

x+y=x4c2x + y = x^{4} c^{2}

D

x2+y2=c2x^{2} +y^{2} = c^{2}

Answer

x2+y2=x4c2x^{2} +y^{2} = x^{4} c^{2}

Explanation

Solution

We have (x2+2y2)dxxydy=0\left(x^{2}+2y^{2}\right)dx-xy dy =0
dydx=x2+2y2xy=xy+2yx(i)\Rightarrow \frac{dy}{dx}=\frac{x^{2}+2y^{2}}{xy}=\frac{x}{y}+\frac{2y}{x} \ldots\left(i\right)
put y=vxy=vx so that dydx=v+xdvdx\frac{dy}{dx}=v+x\frac{dv}{dx}
(i)\therefore \left(i\right) becomes, v+xdvdx=1v+2vv+x \frac{dv}{dx}=\frac{1}{v}+2v
xdvdx=1+2v2v2v\Rightarrow x \frac{dv}{dx}=\frac{1+2v^{2}-v^{2}}{v}
=1+v2v=\frac{1+v^{2}}{v}
v1+v2dv\Rightarrow \frac{v}{1+v^{2}} dv
=dxx=\frac{dx}{x}
Integrating both sides, we get
v1+v2dv\int \frac{v}{1+v^{2}} dv
=dxx+C1=\int\frac{dx}{x}+C_{1}
12log1+v2\Rightarrow \frac{1}{2}log \left|1+v^{2}\right|
=logx+logc=log \left|x\right|+log c
log1+y2x2=2logcx\Rightarrow log \left|1+\frac{y^{2}}{x^{2}}\right|=2\,log\,cx
x2+y2x2=c2x2\Rightarrow \frac{x^{2}+y^{2}}{x^{2}}=c^{2}x^{2}
x2+y2=c2x4\Rightarrow x^{2}+y^{2}=c^{2}x^{4}, is the required solution