Solveeit Logo

Question

Question: For \[(ax + b){e^{\left( {\dfrac{y}{x}} \right)}} = x\] . Find \(\dfrac{{{d^2}y}}{{d{x^2}}}\)...

For (ax+b)e(yx)=x(ax + b){e^{\left( {\dfrac{y}{x}} \right)}} = x . Find d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}

Explanation

Solution

Hint : In this question, we need to evaluate the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}. For this, we will apply logarithm on both sides of the equation. Express y in terms of x. Then find dydx\dfrac{{dy}}{{dx}}. Take the derivative of dydx\dfrac{{dy}}{{dx}} to get the answer.

Complete step by step solution:
We are given that (ax+b)e(yx)=x(ax + b){e^{\left( {\dfrac{y}{x}} \right)}} = x.
We need to find the second derivative.
This equation can also be written as e(yx)=x(ax+b){e^{\left( {\dfrac{y}{x}} \right)}} = \dfrac{x}{{(ax + b)}}
To simplify this equation, we will apply logarithm on both sides.
Thus, we get
loge(yx)=log(xax+b)\log {e^{\left( {\dfrac{y}{x}} \right)}} = \log (\dfrac{x}{{ax + b}})
We know that logba=alogb\log {b^a} = a\log b.
Therefore,
yxloge=log(xax+b)\dfrac{y}{x}\log e = \log (\dfrac{x}{{ax + b}})
Now, loge=1\log e = 1.
Thus, we get

yx=log(xax+b) y=xlog(xax+b)......(1)  \dfrac{y}{x} = \log (\dfrac{x}{{ax + b}}) \\\ \Rightarrow y = x\log (\dfrac{x}{{ax + b}})......(1) \;

Differentiating both sides of (1) with respect to x, we get
dydx=ddx(xlog(xax+b))\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(x\log (\dfrac{x}{{ax + b}}))
The product rule of derivatives is as follows:
If y=u×vy = u \times v, then dydx=udvdx+vdudx\dfrac{{dy}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}.
Applying the product rule, we get
dydx=xddx(log(xax+b))+log(xax+b)ddx(x)\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) + \log (\dfrac{x}{{ax + b}})\dfrac{d}{{dx}}(x)
We know that ddx(x)=1\dfrac{d}{{dx}}(x) = 1 .
dydx=xddx(log(xax+b))+log(xax+b)......(2)\Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) + \log (\dfrac{x}{{ax + b}})......(2)
Also, logab=logalogb\log \dfrac{a}{b} = \log a - \log b.
Therefore, log(xax+b)=logxlog(ax+b)\log (\dfrac{x}{{ax + b}}) = \log x - \log (ax + b) .
This implies that

ddx(log(xax+b)) =ddx(logxlog(ax+b)) =ddx(logx)ddx(log(ax+b))  \dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) \\\ = \dfrac{d}{{dx}}(\log x - \log (ax + b)) \\\ = \dfrac{d}{{dx}}(\log x) - \dfrac{d}{{dx}}(\log (ax + b)) \;

We know that log(ax+b)=aax+b\log (ax + b) = \dfrac{a}{{ax + b}} and logx=1x\log x = \dfrac{1}{x}.
Therefore, we get ddx(log(xax+b))=1xaax+b.....(3)\dfrac{d}{{dx}}(\log (\dfrac{x}{{ax + b}})) = \dfrac{1}{x} - \dfrac{a}{{ax + b}}.....(3) .
On combining, (2) and (3), we have
dydx=x(1xaax+b)+log(xax+b)\dfrac{{dy}}{{dx}} = x(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + \log (\dfrac{x}{{ax + b}})
Multiplying xxon both the sides, we get
xdydx=x2(1xaax+b)+xlog(xax+b)x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + x\log (\dfrac{x}{{ax + b}})
Using (1), we have

xdydx=x2(1xaax+b)+y xdydx=x2(bx(ax+b))+y=bx(ax+b)+y......(4)  x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{1}{x} - \dfrac{a}{{ax + b}}) + y \\\ \Rightarrow x\dfrac{{dy}}{{dx}} = {x^2}(\dfrac{b}{{x(ax + b)}}) + y = \dfrac{{bx}}{{(ax + b)}} + y......(4) \;

We will again differentiate (4) with respect to x.

xd2ydx2+dydx=ddx(bx(ax+b))+dydx xd2ydx2=ddx(bx(ax+b))   x\dfrac{{{d^2}y}}{{d{x^2}}} + \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) + \dfrac{{dy}}{{dx}} \\\ \Rightarrow x\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) \;

The quotient rule of derivatives is as follows:
If y=uvy = \dfrac{u}{v}, then dydx=vdudxudvdxv2\dfrac{{dy}}{{dx}} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}.
On applying the quotient rule, we get

xd2ydx2=ddx(bx(ax+b)) =(ax+b)d(bx)dxbxd(ax+b)dx(ax+b)2 =b(ax+b)abx(ax+b)2 =abx+b2abx(ax+b)2 =b2(ax+b)2   x\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{bx}}{{(ax + b)}}) \\\ = \dfrac{{(ax + b)\dfrac{{d(bx)}}{{dx}} - bx\dfrac{{d(ax + b)}}{{dx}}}}{{{{(ax + b)}^2}}} \\\ = \dfrac{{b(ax + b) - abx}}{{{{(ax + b)}^2}}} \\\ = \dfrac{{abx + {b^2} - abx}}{{{{(ax + b)}^2}}} \\\ = \dfrac{{{b^2}}}{{{{(ax + b)}^2}}} \;

Thus, d2ydx2=1x×b2(ax+b)2=b2x(ax+b)2\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{x} \times \dfrac{{{b^2}}}{{{{(ax + b)}^2}}} = \dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}
Hence, the required answer is b2x(ax+b)2\dfrac{{{b^2}}}{{x{{(ax + b)}^2}}} .
So, the correct answer is “b2x(ax+b)2\dfrac{{{b^2}}}{{x{{(ax + b)}^2}}}”.

Note : In any equation related to derivatives which contains ee, the first approach should be applying logarithm to eliminate ee. This will simplify the equation. Only then proceed with the differentiation part like we did in the above question.