Question
Mathematics Question on Vector Algebra
For any vector x, where i^,j^,k^ have their usual meanings the value of (x×i^)2+(x×j^)2+(x×k^)2 where i^,j^,k have their usual meanings, is equal to
A
∣x∣2
B
2∣x∣2
C
3∣x∣2
D
4∣x∣2
Answer
2∣x∣2
Explanation
Solution
Let x=αi^+βj^+γk
Then, x×i^=−βk^+γj^
x×j^=k^−γi^
x×k=−aj+βi^
Now, (x×i^)2=(x×i^)⋅(x×i^)
=(−βk^+γj^)⋅(−βk^+γj^)
=β2+γ2
Similarly, (x×j^)2=α2+γ2
and (x×K^)2=α2+β2
∴(x×i^)2+(x×j^)2+(x×K^)2
=β2+γ2+α2+γ2+α2+β2
=2(α2+β2+γ2)=2∣x∣2