Solveeit Logo

Question

Question: For any vector \[\overrightarrow r \], prove that \[\overrightarrow r = \left( {\overrightarrow r .\...

For any vector r\overrightarrow r , prove that r=(r.i)i+(r.j)j+(r.k)k\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge .

Explanation

Solution

Hint: To prove the given problem we have to take the standard equation of vector r\overrightarrow r i.e., r=xi+yj+zk\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge . So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:
Given r=(r.i)i+(r.j)j+(r.k)k..................................................(1)\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)
Let r=xi+yj+zk............................................................(2)\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)
From equation (1) and (2) we have
r=((xi+yj+zk).i)i+((xi+yj+zk).j)j+((xi+yj+zk).k)k\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge
Now first consider r=((xi+yj+zk).i)i\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge
r=(xi.i+yj.i+zk.i)i\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge
By using the formulae i.i=1 , j.i=0 and k.i=0\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0 we have
r=(x(1)+y(0)+z(0))i=xi\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge
Then consider r=((xi+yj+zk).j)j\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge
r=(xi.j+yj.j+zk.j)j\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge
By using the formulae i.j=0 , j.j=1 and k.j=0\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0 we have
r=(x(0)+y(1)+z(0))j=yj\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge
Next consider r=((xi+yj+zk).k)k\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge
r=(xi.k+yj.k+zk.k)k\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge
By using the formulae i.k=0 , j.k=0 and k.k=1\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1
r=(x(0)+y(1)+z(1))k=zk\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge
Using the above information, we have
r=((xi+yj+zk).i)i+((xi+yj+zk).j)j+((xi+yj+zk).k)k\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge equals to
r=xi+yj+zk...........................................(3)\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)
From equations (2) and (3) we can conclude that
r=(r.i)i+(r.j)j+(r.k)k\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge
Hence proved.

Note: Here we have used dot products of vectors. The formulae which are used in the solution are

j.i=0 , j.j=1 and j.k=0 i.k=0 , j.k=0 and k.k=1  \mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\\ \mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\\