Solveeit Logo

Question

Question: For any value of \(x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\) , prove that \({{\tan }^{-...

For any value of x(π2,π2)x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) , prove that tan1(cosx1+sinx)=π4x2{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}.

Explanation

Solution

To solve this problem, we should know the transformation formulae in trigonometry. We know that cosx=cos2(x2)sin2(x2)\cos x={{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right) and 1+sinx=(sin(x2)+cos(x2))21+\sin x={{\left( \sin \left( \dfrac{x}{2} \right)+\cos \left( \dfrac{x}{2} \right) \right)}^{2}}. Using these two formulae, we can rewrite the L.H.S by cancelling sin(x2)+cos(x2)\sin \left( \dfrac{x}{2} \right)+\cos \left( \dfrac{x}{2} \right) . We get the transformed L.H.S as tan1(cos(x2)sin(x2)cos(x2)+sin(x2)){{\tan }^{-1}}\left( \dfrac{\cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right)} \right). By cancelling cosx2\cos \dfrac{x}{2}, We get tan1(1tan(x2)1+tan(x2))=tan1(tan(π4x2)){{\tan }^{-1}}\left( \dfrac{1-\tan \left( \dfrac{x}{2} \right)}{1+\tan \left( \dfrac{x}{2} \right)} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right). By checking the range of π4x2\dfrac{\pi }{4}-\dfrac{x}{2} , we can cancel tan1{{\tan }^{-1}} and tan\tan to get the required R.H.S.

Complete step by step answer:
We know the formula for cos2y\cos 2y in terms of cosy\cos y and siny\sin y as
cos2y=cos2ysin2y(1)\cos 2y={{\cos }^{2}}y-{{\sin }^{2}}y\to \left( 1 \right).
Let us consider a function siny+cosy\sin y+\cos y and squaring the function, we get
(siny+cosy)2=sin2y+cos2y+2sinycosy{{\left( \sin y+\cos y \right)}^{2}}={{\sin }^{2}}y+{{\cos }^{2}}y+2\sin y\cos y
We know that sin2y+cos2y=1{{\sin }^{2}}y+{{\cos }^{2}}y=1 and 2sinycosy=sin2y2\sin y\cos y=\sin 2y.
Using them, we get
(siny+cosy)2=1+sin2y(2){{\left( \sin y+\cos y \right)}^{2}}=1+\sin 2y\to \left( 2 \right)
Substituting y=x2y=\dfrac{x}{2} in equations-1 and 2, we get
cosx=cos2x2sin2x2(3)\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\to \left( 3 \right)
1+sinx=(sinx2+cosx2)2(4)1+\sin x={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}\to \left( 4 \right)
Using the equations-3, 4 in tan1(cosx1+sinx){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right), we get
tan1(cosx1+sinx)=tan1(cos2(x2)sin2(x2)(cos(x2)+sin(x2))2){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{{{\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}^{2}}} \right)
We know the formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right),
Using that in above equation, we get
tan1(cosx1+sinx)=tan1((cos(x2)sin(x2))×(cos(x2)+sin(x2))(cos(x2)+sin(x2))2){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\left( \cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right) \right)\times \left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}{{{\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}^{2}}} \right)
We can cancel (cos(x2)+sin(x2))\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right) in numerator and denominator as (cos(x2)+sin(x2))0\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)\ne 0 in the given range of x. We get
tan1(cosx1+sinx)=tan1(cos(x2)sin(x2)cos(x2)+sin(x2)){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right)} \right)
Dividing by cos(x2)\cos \left( \dfrac{x}{2} \right) in numerator and denominator, we get
tan1(cosx1+sinx)=tan1(1sin(x2)cos(x2)1+sin(x2)cos(x2)){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}}{1+\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}} \right)
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x, we can write the above equation as,
tan1(cosx1+sinx)=tan1(1tan(x2)1+tan(x2)){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{1-\tan \left( \dfrac{x}{2} \right)}{1+\tan \left( \dfrac{x}{2} \right)} \right)
We know that tanπ4=1\tan \dfrac{\pi }{4}=1. We can rewrite the above equation as
tan1(cosx1+sinx)=tan1(tanπ4tan(x2)1+tanπ4×tan(x2)){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\tan \dfrac{\pi }{4}-\tan \left( \dfrac{x}{2} \right)}{1+\tan \dfrac{\pi }{4}\times \tan \left( \dfrac{x}{2} \right)} \right)
We know that tan(AB)=tanAtanB1tanA×tanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1-\tan A\times \tan B}, we can write the above equation By taking A=π4,B=x2A=\dfrac{\pi }{4},B=\dfrac{x}{2} as
tan1(cosx1+sinx)=tan1(tan(π4x2))(5){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)\to \left( 5 \right)
We can write tan1(tanx)=x{{\tan }^{-1}}\left( \tan x \right)=x when x(π2,π2)x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right).
Let us consider π4x2\dfrac{\pi }{4}-\dfrac{x}{2},
When x=π2x=-\dfrac{\pi }{2}, we get π4x2=π4+π4=π2\dfrac{\pi }{4}-\dfrac{x}{2}=\dfrac{\pi }{4}+\dfrac{\pi }{4}=\dfrac{\pi }{2}
When x=π2x=\dfrac{\pi }{2}, we get π4x2=π4π4=0\dfrac{\pi }{4}-\dfrac{x}{2}=\dfrac{\pi }{4}-\dfrac{\pi }{4}=0.
For the given range of x in the question which is x(π2,π2)x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right), we can infer that
(π4x2)(0,π2)\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)\in \left( 0,\dfrac{\pi }{2} \right)
As (π4x2)(0,π2)\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)\in \left( 0,\dfrac{\pi }{2} \right), we can write
tan1(tan(π4x2))=π4x2{{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)=\dfrac{\pi }{4}-\dfrac{x}{2}.
We can write equation-5 as
tan1(cosx1+sinx)=π4x2{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}
\therefore For the given range of x(π2,π2)x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right), proved that tan1(cosx1+sinx)=π4x2{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}.

Note:
Students can make a mistake while using the relation tan1(tanx)=x{{\tan }^{-1}}\left( \tan x \right)=x. In this question, the values of x are within the range where the formula is valid, but we have to be careful while applying it and we have to check whether x is in the range of (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) or not. If the values of x are outside the range, we should write the corresponding value of angle within the range of (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) which has a value of tan function equal to tanx\tan x. Students should check if a term is zero or not in the given range while cancelling it in numerator and denominator, like we did for (cos(x2)+sin(x2))\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right).