Solveeit Logo

Question

Question: For any two vectors \(\vec{a}\) and \(\vec{b}\) we have \(|\vec{a}.\vec{b}|\\_\\_\\_|\vec{a}|.|\vec{...

For any two vectors a\vec{a} and b\vec{b} we have |\vec{a}.\vec{b}|\\_\\_\\_|\vec{a}|.|\vec{b}|. Fill in the blank with appropriate inequality.

& a)\le \\\ & b)\ge \\\ & c)< \\\ & d)> \\\ \end{aligned}$$
Explanation

Solution

We know that a.b=abcosθ\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta . Hence we can take modulus on both side and find a.b=abcosθ|\vec{a}.\vec{b}|=||\vec{a}||\vec{b}|\cos \theta |. Now we will use the property that a.b=a.b|a.b|=|a|.|b|. Now we also know that the range of cosθ\cos \theta is from -1 to 1. Hence taking mod we can find that cosθ1|\cos \theta |\le 1 . Hence we get relation between a.b|\vec{a}.\vec{b}| and a.b|\vec{a}|.|\vec{b}|

Complete step by step answer:
Now let us say a\vec{a} and b\vec{b} are two vectors.
Now we will take dot product or scalar product of the vectors a\vec{a} and b\vec{b}
We know that the dot product a.b\vec{a}.\vec{b} is given by a.b.cosθ|\vec{a}|.|\vec{b}|.\cos \theta
Hence now we have a.b=a.bcosθ\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta
Now taking modulus on both side we get a.b=a.b.cosθ|\vec{a}.\vec{b}|=||\vec{a}|.|\vec{b}|.\cos \theta |
Now the values a,b,cosθ|\vec{a}|,|\vec{b}|,\cos \theta are all scalar quantities and for scalars we have a.b=a.b|a.b|=|a|.|b|
a.b=a.b.cosθ|\vec{a}.\vec{b}|=||\vec{a}||.||\vec{b}||.|\cos \theta |
Now we know that a|\vec{a}| is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that a=a|a|=a hence we have a=a||\vec{a}||=|\vec{a}|.
Similarly b|\vec{b}| is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that a=a|a|=a hence we have b=b||\vec{b}||=|\vec{b}|
Hence, we get
a.b=a.b.cosθ................(1)|\vec{a}.\vec{b}|=|\vec{a}|.|\vec{b}|.|\cos \theta |................(1)
Now we know that for cosθ\cos \theta the range is from [1,1]\left[ -1,1 \right]
This means 1cosθ1-1\le \cos \theta \le 1
Now taking modulus we get 0cosθ10\le |\cos \theta |\le 1
Multiplying the equation with a.b|\vec{a}|.|\vec{b}| we get
0a.bcosθa.b...........(2)0\le |\vec{a}|.|\vec{b}||\cos \theta |\le |\vec{a}|.|\vec{b}|...........(2)
Now from equation (1) and equation (2) we get
a.bab|\vec{a}.\vec{b}|\le |\vec{a}||\vec{b}|

So, the correct answer is “Option A”.

Note: Now dot product of two vectors is defined as a.b=a.bcosθ\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta and magnitude of cross product of vector is a×b=a.bsinθ|\vec{a}\times \vec{b}|=|\vec{a}|.|\vec{b}|\sin \theta Note that the two similar looking quantities have quite different meanings.