Solveeit Logo

Question

Question: For any two vectors \(\overrightarrow { \boldsymbol { A } }\) and \(\vec { B }\) if \(\overright...

For any two vectors A\overrightarrow { \boldsymbol { A } } and B\vec { B } if A\overrightarrow { \boldsymbol { A } } .=|×|, the

magnitude of A\vec { A }+ B\vec { B } is equal to

A

A2+B2\sqrt { A ^ { 2 } + B ^ { 2 } }

B

A + B

C

[A2 + B2 + [A2+B2+AB2]1/2\left[ A ^ { 2 } + B ^ { 2 } + \frac { A B } { \sqrt { 2 } } \right] ^ { 1 / 2 }

D

(A2 + B2 + 2\sqrt { 2 }× AB)1/2

Answer

(A2 + B2 + 2\sqrt { 2 }× AB)1/2

Explanation

Solution

. B\vec { B } =AB cosθ . . . (1)

|× B\vec { B } |= AB sinθ . . . (2)

∴ AB cosθ = AB sinθ ⇒ θ = 450

Again given C\overrightarrow { \mathrm { C } } =+ B\vec { B }

∴ | C\overrightarrow { \mathrm { C } } | = (A2 + B2 + 2ABcos45°)1/2

= (A2 + B2 + √2AB)1/2

Hence (4) is correct.