Solveeit Logo

Question

Question: For any two vectors **a** and **b,** \(\mathbf{(a}\mathbf{\times}\mathbf{b}\mathbf{)}^{\mathbf{2}}\)...

For any two vectors a and b, (a×b)2\mathbf{(a}\mathbf{\times}\mathbf{b}\mathbf{)}^{\mathbf{2}} is equal to

A

a2b2a^{2} - b^{2}

B

a2+b2a^{2} + b^{2}

C

a2b2(a.b)2a^{2}b^{2} - (\mathbf{a}.\mathbf{b})^{2}

D

None of these

Answer

a2b2(a.b)2a^{2}b^{2} - (\mathbf{a}.\mathbf{b})^{2}

Explanation

Solution

(a×b)2=(a×b).(a×b)=(absinθn^)(absinθn^)(\mathbf{a} \times \mathbf{b})^{2} = (\mathbf{a} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b}) = (ab\sin\theta\widehat{\mathbf{n}})(ab\sin\theta\widehat{\mathbf{n}})

=a2b2sin2θ=a2b2(1cos2θ)= a^{2}b^{2}\sin^{2}\theta = a^{2}b^{2}(1 - \cos^{2}\theta)

=a2b2a2b2cos2θ=a2b2(a.b)2.= a^{2}b^{2} - a^{2}b^{2}\cos^{2}\theta = a^{2}b^{2} - (\mathbf{a}.\mathbf{b})^{2}.