Solveeit Logo

Question

Question: For any two non-zero vectors a and b, $(ab+ba).(ab-ba)$ is...

For any two non-zero vectors a and b, (ab+ba).(abba)(ab+ba).(ab-ba) is

A

a2+b2|a|^2 + |b|^2

B

2a22|a|^2

C

2b22|b|^2

D

0

Answer

0

Explanation

Solution

Given the expression:

(ab+ba)(abba)(ab+ba) \cdot (ab-ba)

Notice that if we assume "ab" denotes a product (whether dot product or cross product), then in both cases the operation is commutative or anti-commutative:

  1. Case 1 (Dot Product):
    Since the dot product is commutative, we have:

    ab+ba=2(ab)ab+ba = 2(a \cdot b) and abba=0ab-ba = 0.

    Hence,

    (ab+ba)(abba)=2(ab)0=0(ab+ba) \cdot (ab-ba) = 2(a \cdot b) \cdot 0 = 0.

  2. Case 2 (Cross Product):
    The cross product is anti-commutative, i.e., a×b=(b×a)\mathbf{a \times b} = - (\mathbf{b \times a}). So,

    ab+ba=a×b+b×a=0ab+ba = \mathbf{a \times b} + \mathbf{b \times a} = 0,

    and

    abba=a×bb×a=2a×bab-ba = \mathbf{a \times b} - \mathbf{b \times a} = 2\,\mathbf{a \times b}.

    Thus,

    (ab+ba)(abba)=02a×b=0(ab+ba) \cdot (ab-ba) = 0 \cdot 2\,\mathbf{a \times b} = 0.

In either interpretation, the answer is 0.