Solveeit Logo

Question

Question: For any two events \[A\] and \[B\] in a sample space A. \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}...

For any two events AA and BB in a sample space
A. P(AB)P(A)+P(B)1P(B),P(B)0{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0 , is always true.
B. P(AB)=P(A)P(AB){\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) - {\rm P}(\overline {\rm A} \cap \overline {{\rm B})} does not hold
C. P(AB)=1P(A)P(B){\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} ) , if A{\rm A} and B{\rm B} are independent
D. P(AB)=1P(A)P(B){\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}({\rm A}){\rm P}({\rm B}) , if A{\rm A} and B{\rm B} are disjoint.

Explanation

Solution

Hint : Here, any two events AA and BB in sample space. The sample space of a random experiment is the collection of all possible outcomes. A probability model consists of the sample space and the way to assign probabilities. An event associated with a random experiment is a subset of the sample space. The probability of any outcome is a number between 0 and 1. An event is a set of outcomes of an experiment to which a probability is assigned.

Complete step by step solution:
P(AB)P(A)+P(B)1P(B),P(B)0{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0 , is always true.
We know that, P(AB)=P(AB)P(B){\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A} \cap {\rm B})}}{{{\rm P}(B)}} where P(B)0{\rm P}({\rm B}) \ne 0
Now,
P(AB)=P(A)+P(B)P(AB){\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})
Rearranging it, we get
P(AB)=P(A)+P(B)P(AB){\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})
By using above values, we have

P(AB)=P(A)+P(B)P(AB)P(B) P(AB)P(A)+P(B)1P(B)   {\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})}}{{{\rm P}(B)}} \\\ {\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}(B)}} \;

P(AB)1{\rm P}({\rm A} \cup {\rm B}) \leqslant 1
Hence, Option(A) is true

Therefore, P(AB)=1P(AB){\rm P}(\overline {\rm A} \cap \overline {\rm B} ) = 1 - {\rm P}({\rm A} \cup B) , By apply demorgan’s law into the above equation, we get,
Here, we have
P(AB)=P(A)+P(B)P(AB){\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})
By this demorgan’s law, we get
P(AB)=P(A)+P(B)1+P(AB){\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - 1 + {\rm P}(\overline {\rm A} \cap \overline {\rm B} )
Hence, Option(B) is also true.

So we use P(AB)=P(A)+P(B)P(AB){\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})
if A{\rm A} and B{\rm B} are independent, then P(AB)=P(A)P(B){\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}){\rm P}({\rm B})
Thus, P(AB)=P(A)+P(B)P(A)P(B){\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A}){\rm P}({\rm B})
Take P(A){\rm P}({\rm A}) out from bracket, we get

P(AB)=P(A)(1P(B))+P(B) =(1P(A))P(B)+1P(B)   {\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A})(1 - {\rm P}({\rm B})) + {\rm P}({\rm B}) \\\ = (1 - {\rm P}(\overline {\rm A} )){\rm P}(\overline {\rm B} ) + 1 - {\rm P}(\overline {\rm B} ) \;

Therefore, P(AB)=1P(A)P(B){\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} ) , which is option(C)

if A{\rm A} and B{\rm B} are disjoint, then P(AB)=0{\rm P}({\rm A} \cap {\rm B}) = 0
We know, P(AB)=P(A)+P(B)=2P(A)P(B){\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) = 2 - {\rm P}(\overline {\rm A} ) - {\rm P}(\overline {\rm B} ) ,
Finally, A{\rm A} , B{\rm B} and CC is the final answer.
So, the correct answer is “OptionA,B and C”.

Note : In probability theory, an event is a set of outcomes of an experiment to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes.