Solveeit Logo

Question

Question: For any two complex numbers Z<sub>1</sub> and Z<sub>2</sub> with \|Z<sub>1</sub>\| ¹ \|Z<sub>2</sub>...

For any two complex numbers Z1 and Z2 with |Z1| ¹ |Z2|

|2\sqrt{2}Z1 + i3\sqrt { 3 } Zˉ2{\bar{Z}}_{2}|2 + |3\sqrt { 3 } Zˉ1{\bar{Z}}_{1}+ i2\sqrt{2}Z2|2 is –

A

Less than 5 (Z12+Z22)\left( |Z_{1}|^{2} + |Z_{2}|^{2} \right)

B

Greater than 10 |Z1Z2|

C

Equal to 2 |Z1|2 + 3|Z2|2

D

Zero

Answer

Greater than 10 |Z1Z2|

Explanation

Solution

Sol.2\sqrt{2}Z1 + i3\sqrt { 3 } Zˉ2{\bar{Z}}_{2}|2 + | 3\sqrt { 3 } Zˉ1{\bar{Z}}_{1}+ i2\sqrt{2}Z2|2

= (2\sqrt{2}Z1 + i2\sqrt { 2 } Zˉ1{\bar{Z}}_{1}– i3\sqrt{3}Z2) + (2\sqrt { 2 } Zˉ2{\bar{Z}}_{2})

= 5(Z12+Z22)\left( |Z_{1}|^{2} + |Z_{2}|^{2} \right) > 5. 2 Z12Z22\sqrt{\left| Z_{1} \right|^{2}\left| Z_{2} \right|^{2}}

= 10|Z1Z2|, since AM > GM for |Z1| ¹ |Z2|