Question
Mathematics Question on Algebra of Complex Numbers
For any two complex numbers z1 and z2, prove that Re (z1z2) = Re z1 Re z2-Im z1 Im z2.
Answer
Let z1=x1+iy1 and z2=x2+iy2
∴ z1z2=(x1+iy1) (x2+iy2)
= x1(x2+iy2)+iy1(x2+iy2)
= x1x2+ix1y2+iy1x2+i2y1y2
= x1x2+ix1y2+iy1x2--y1y2 [i2=-1]
⇒ (x1x2-y1y2)+i(x1y2+y1x2)
⇒ Re(z1z2)=Re z1Re Z2-Imz1 ImZ2
Hence, proved.