Solveeit Logo

Question

Mathematics Question on Sequence and series

For any three positive real numbers a, b and c, 9(25a2+b2)+25(c23ac)=15b(3a+c)9(25a^2 + b^2) + 25 (c^2 - 3ac) = 15b (3a + c). Then :

A

b,cb, c and aa are in A.PA.P

B

a,ba, b and cc are in A.PA.P

C

a,ba, b and cc are in G.PG.P

D

b,cb, c and aa are in G.PG.P

Answer

b,cb, c and aa are in A.PA.P

Explanation

Solution

9(25a2+b2)+25(c2+3ac)=15b(3a+c)9\left(25a^{2} + b^{2} \right) + 25\left(c^{2} + 3ac\right) = 15b\left(3a + c\right)
(15a)2+(3b)2+(5c)245ab15bc75ac=0\Rightarrow \left(15a\right)^{2} + \left(3b\right)^{2} + \left(5c\right)^{2} - 45ab - 15bc - 75ac = 0
(15a3b)2+(3b5c)2+(15a5c)2=0\Rightarrow \left(15a - 3b\right)^{2} + \left(3b - 5c\right)^{2} + \left(15a - 5c\right)^{2} = 0
It is possible when
15a3b=015a - 3b = 0 and 3b5c=03b - 5c = 0 and 15a5c=015a - 5c = 0
15a=3b=5c15a = 3b = 5c
a1=b5=c3\frac{a}{1} = \frac{b}{5} = \frac{c}{3}
\therefore b, c, a are in A.P.