Question
Question: For any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right),\text{ the expression }3{{\left(...
For any θ∈(4π,2π), the expression 3(sinθ−cosθ)4+6(sinθ+cosθ)2+4sin6θ
is,
A) 13−4cos6θB) 13−4cos4θ+2sin2θcos2θB) 13−4cos2θ+6cos4θB) 13−4cos2θ+6sin2θcos2θ
Explanation
Solution
In this problem, we will first express (sinθ−cosθ)2 and (sinθ+cosθ)2 using (a+b)2=a2+2ab+b2.we will also use sin2θ+cos2θ=1
Complete step by step answer:
The given expression
3(sinθ−cosθ)4+6(sinθ+cosθ)2+4sin6θ=3((sinθ−cosθ)2)2+6(sinθ+cosθ)2+4sin6θ
Now we will use (a+b)2=a2+2ab+b2 and (a−b)2=a2−2ab+b2 to express (sinθ+cosθ)2 and (sinθ−cosθ)2.