Solveeit Logo

Question

Question: For any t Ī R and ƒ a continuous function, let I<sub>1</sub> =\(\int_{\sin^{2}t}^{1 + \cos^{2}t}{xƒ...

For any t Ī R and ƒ a continuous function, let

I1 =sin2t1+cos2txƒ(x(2x))dx\int_{\sin^{2}t}^{1 + \cos^{2}t}{xƒ(x(2 - x))dx}and I2 = sin2t1+cos2tƒ(x(2x))dx\int_{\sin^{2}t}^{1 + \cos^{2}t}{ƒ(x(2 - x))dx}then I1/I2 is equal to-

A

2

B

1

C

4

D

None of these

Answer

1

Explanation

Solution

I1 = sin2t1+cos2t(2x)ƒ((2x)(2(2x)))\int_{\sin^{2}t}^{1 + \cos^{2}t}{(2 - x)ƒ((2 - x)(2 - (2 - x)))} dx

=sin2t1+cos2t(2x)ƒ(x(2x))\int_{\sin^{2}t}^{1 + \cos^{2}t}{(2 - x)ƒ(x(2 - x))}dx

= 2sin2t1+cos2tƒ(x(2x))\int_{\sin^{2}t}^{1 + \cos^{2}t}{ƒ(x(2 - x))}dx – sin2t1+cos2txƒ(x(2x))\int_{\sin^{2}t}^{1 + \cos^{2}t}{xƒ(x(2 - x))}dx

= 2I2 – I1

Therefore, 2I1 = 2I2 and so I1/I2 = 1.