Question
Question: For any t Ī R and a continuous function, let I<sub>1</sub> =\(\int_{\sin^{2}t}^{1 + \cos^{2}t}{xƒ...
For any t Ī R and a continuous function, let
I1 =∫sin2t1+cos2txƒ(x(2−x))dxand I2 = ∫sin2t1+cos2tƒ(x(2−x))dxthen I1/I2 is equal to-
A
2
B
1
C
4
D
None of these
Answer
1
Explanation
Solution
I1 = ∫sin2t1+cos2t(2−x)ƒ((2−x)(2−(2−x))) dx
=∫sin2t1+cos2t(2−x)ƒ(x(2−x))dx
= 2∫sin2t1+cos2tƒ(x(2−x))dx – ∫sin2t1+cos2txƒ(x(2−x))dx
= 2I2 – I1
Therefore, 2I1 = 2I2 and so I1/I2 = 1.