Solveeit Logo

Question

Question: For any sets A, B and C, prove that \(\begin{aligned} & [i]\left( A\bigcup B \right)-C=\left( A-...

For any sets A, B and C, prove that
[i](AB)C=(AC)(BC) [ii](AB)C=(AC)(BC) \begin{aligned} & [i]\left( A\bigcup B \right)-C=\left( A-C \right)\bigcup \left( B-C \right) \\\ & [ii]\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right) \\\ \end{aligned}

Explanation

Solution

Hint: Prove the R.H.S. of each statement is equal to the L.H.S. of the statement. Use the fact that AB=ABcA-B=A\bigcap {{B}^{c}}. Use distributive laws and associative laws of union and intersection to simplify R.H.S. and hence prove L.H.S. is equal to R.H.S.

Complete step-by-step answer:
[i] We have R.H.S. =(AC)(BC)=\left( A-C \right)\bigcup \left( B-C \right)
We know that AB=ABcA-B=A\bigcap {{B}^{c}}
Hence, we have R.H.S. =(ACc)(BCc)=\left( A\bigcap {{C}^{c}} \right)\bigcup \left( B\bigcap {{C}^{c}} \right)
We know that the intersection of two sets distributes over the union, i.e. A(BC)=(AB)(AC)A\bigcap \left( B\bigcup C \right)=\left( A\bigcap B \right)\bigcup \left( A\bigcap C \right)
Hence, we have
R.H.S. =Cc(AB)={{C}^{c}}\bigcap \left( A\bigcup B \right)
Now, we know that AB=ABcA-B=A\bigcap {{B}^{c}}
Hence, we have R.H.S. =ABC=A\bigcup B-C
Hence, RHS = LHS.

[ii] RHS =(AC)(BC)=\left( A-C \right)\bigcap \left( B-C \right)
We know that AB=ABcA-B=A\bigcap {{B}^{c}}
Hence, we have R.H.S. =(ACc)(BCc)=\left( A\bigcap {{C}^{c}} \right)\bigcap \left( B\bigcap {{C}^{c}} \right)
We know that the intersection of two sets is associative, i.e. A(BC)=(AB)CA\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C
Hence, we have R.H.S. =A(CC(BCc))=A\bigcap \left( {{C}^{C}}\bigcap \left( B\bigcap {{C}^{c}} \right) \right)
We know that the intersection of two sets is associative, i.e. A(BC)=(AB)CA\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C
Hence, we have R.H.S. =A((CcCc)B)=A\bigcap \left( \left( {{C}^{c}}\bigcap {{C}^{c}} \right)\bigcap B \right)
We know that AA=AA\bigcap A=A
Hence, we have
R.H.S. =A(CcB)=A(BCc)=A\bigcap \left( {{C}^{c}}\bigcap B \right)=A\bigcap \left( B\bigcap {{C}^{c}} \right)
We know that the intersection of two sets is associative, i.e. A(BC)=(AB)CA\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C
Hence, we have
R.H.S. =(AB)Cc=\left( A\bigcap B \right)\bigcap {{C}^{c}}
Now, we know that AB=ABcA-B=A\bigcap {{B}^{c}}
Hence, we have
R.H.S. =ABC=A\bigcap B-C
Hence, LHS = RHS

Note: Verification using Venn diagrams:
[i] Diagram of ABA\bigcup B

Diagram of ABCA\bigcup B-C

Diagram of ACA-C

Diagram of BCB-C

Diagram of (AC)(BC)\left( A-C \right)\bigcup \left( B-C \right)

Hence from Venn diagrams, it is verified that (AB)C=(AC)(BC)\left( A\bigcup B \right)-C=\left( A-C \right)\bigcup \left( B-C \right)
Similarly, it can be verified from Venn diagrams that (AB)C=(AC)(BC)\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right)