Solveeit Logo

Question

Question: For any real x the expression 2(k – x) [x +\(\sqrt{x^{2} + k^{2}}\)] cannot exceed –...

For any real x the expression 2(k – x) [x +x2+k2\sqrt{x^{2} + k^{2}}] cannot exceed –

A

k2

B

2 k2

C

3 k2

D

None of these

Answer

2 k2

Explanation

Solution

y = 2 (k – x) (x + x2+k2\sqrt{x^{2} + k^{2}}) or x + x2+k2\sqrt{x^{2} + k^{2}}

= y2(kx)\frac{y}{2(k - x)} …(1)

(x+x2+k2)(x2+k2x)[(x2+k2)x]\frac{(x + \sqrt{x^{2} + k^{2}})(\sqrt{x^{2} + k^{2}} - x)}{\lbrack(\sqrt{x^{2} + k^{2}}) - x\rbrack} = y2(kx)\frac{y}{2(k - x)}

k2x2+k2x\frac{k^{2}}{\sqrt{x^{2} + k^{2}} - x} = y2(kx)\frac{y}{2(k - x)}

(x2+k2)\sqrt{(x^{2} + k^{2})} – x = 2k2(kx)y\frac{2k^{2}(k - x)}{y} … (2)

(1) – (2) ⇒ 2x = y2(kx)\frac{y}{2(k - x)}2k2(kx)y\frac{2k^{2}(k - x)}{y}

4 (y – k2) x2 + 4k (2k2 – y) x + y2 – 4k4 = 0

But x is real D ≥ 0 y2 (y – 2k2) ≤ 0

∴ y ≤ 2k2

Q y2 ≥ 0

max. value of y is 2k2.