Solveeit Logo

Question

Mathematics Question on limits and derivatives

For any real number x, let [ x ] denote the largest integer less than equal to x Let f be a real valued function defined on the interval [-10,10] by f(x)={x[x], if (x) is odd  1+[x]x if (x) is even f(x)=\begin{cases} x-[x], & \text { if }(x) \text { is odd } \\\ 1+[x]-x & \text { if }(x) \text { is even }\end{cases}Then the value ofπ2101010f(x)cosπxdx \frac{\pi^2}{10} \int\limits_{-10}^{10} f(x) \cos \pi x d x is :

A

4

B

2

C

1

D

0

Answer

4

Explanation

Solution

The correct option is(A): 4.