Question
Mathematics Question on Limits
For any real number x , let [x] denote the largest integer less than equal to x. Let f be a real-valued function defined on the interval [–10, 10] by f(x)=\left\\{\begin{matrix} x=[x] & if \,[x]\, is \,odd\\\ 1+[x]-x\,& if\,[x] \,is\,even \end{matrix}\right., if [x] is even, the value of 10π2∫−1010f(x)cosπxdx is
A
4
B
2
C
1
D
0
Answer
4
Explanation
Solution
f(x)=\left\\{\begin{matrix} x=[x] & if \,[x]\, is \,odd\\\ 1+[x]-x\,& if\,[x] \,is\,even \end{matrix}\right.
Graph of f(x)
So,
10π2∫−1010f(x)cosπxdx=10π2⋅20∫01f(x)cosπx dx
=2\pi^2$$\int_{0}^{1}(1−x)cosπx dx
=2π2{(1−x)xsinπx|01−π2cosπx|01}=4