Solveeit Logo

Question

Mathematics Question on Limits

For any real number x , let [x] denote the largest integer less than equal to x. Let f be a real-valued function defined on the interval [–10, 10] by f(x)=\left\\{\begin{matrix} x=[x] & if \,[x]\, is \,odd\\\ 1+[x]-x\,& if\,[x] \,is\,even \end{matrix}\right., if [x] is even, the value of π2101010f(x)cosπxdx\frac{\pi^2}{10}\int_{-10}^{10}f(x)cos\pi x dx is

A

4

B

2

C

1

D

0

Answer

4

Explanation

Solution

f(x)=\left\\{\begin{matrix} x=[x] & if \,[x]\, is \,odd\\\ 1+[x]-x\,& if\,[x] \,is\,even \end{matrix}\right.
Graph of f(x)
x denote the largest integer less than equal to x
So,
π2101010f(x)cosπxdx\frac{\pi^2}{10}\int_{-10}^{10}f(x)cos\pi x dx=π210\frac{\pi^2}{10}⋅2001\int_{0}^{1}f(x)cos⁡πx dx
=2\pi^2$$\int_{0}^{1}(1−x)cos⁡πx dx
=2π2\pi^2{(1−x)sinπxx\frac{sin⁡πx}{x}|01−cosπxπ2\frac{cosπx}{\pi^2}|01}=4