Solveeit Logo

Question

Question: For any real number b, let f(2) denotes the maximum of the function \(\left| \sin x + \frac{2}{3 + \...

For any real number b, let f(2) denotes the maximum of the function sinx+23+sinx+b\left| \sin x + \frac{2}{3 + \sin x} + b \right| over all x Î R, then the

minimum of f(2) over all b Î R is-

A

14\frac{1}{4}

B

24\frac{2}{4}

C

34\frac{3}{4}

D

18\frac{1}{8}

Answer

34\frac{3}{4}

Explanation

Solution

Let y = 3 + sin x, y Î [2, 4] and assumes all values there in.

Also, let g(y) = y + 2y\frac{2}{y}, this function is increasing on

[2, 4]. So, g(2) £ g(y) £ g(4).

Thus, 3 £ g(y) £ 92\frac{9}{2} and both external values are attained.

It now follows that the minimum of

f(2) = max(|g(y) + b – 3|) is 34\frac{3}{4},

which is attained at b = 34- \frac{3}{4}

For if b > 34- \frac{3}{4}, then choose x = π2\frac{\pi}{2}, so y = 4 and then

g(y) + b – 3 > 34\frac{3}{4}

While if b < 34- \frac{3}{4}, then choose x = π2- \frac{\pi}{2}, so y = 2 and

g(y) + b – 3 = 34- \frac{3}{4}

On the other hand range for g(y) is

34- \frac{3}{4} £ g(y) + b – 3 £ 34\frac{3}{4} for b = 34- \frac{3}{4}.

\ Minimum value of f(2) is 34\frac{3}{4}.