Solveeit Logo

Question

Question: For any positive integers m, n (with \(n\ge m\)), let \(\left( \begin{matrix} n \\\ m \\\ ...

For any positive integers m, n (with nmn\ge m), let (n m )=nCm\left( \begin{matrix} n \\\ m \\\ \end{matrix} \right)={}^{n}{{C}_{m}}. Prove that (n m )+(n1 m )+(n2 m )+......+(m m )=(n+1 m+1 )\left( \begin{matrix} n \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-1 \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-2 \\\ m \\\ \end{matrix} \right)+......+\left( \begin{matrix} m \\\ m \\\ \end{matrix} \right)=\left( \begin{matrix} n+1 \\\ m+1 \\\ \end{matrix} \right)?

Explanation

Solution

We start solving the problem by assuming the value of L.H.S as x. We then use the property that for any positive integer ‘a’, we have aCa=1{}^{a}{{C}_{a}}=1 for mCm{}^{m}{{C}_{m}} and replace it with m+1Cm+1{}^{m+1}{{C}_{m+1}}. We then use the property nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} for next consecutive terms from the right to left continuously. After applying the property nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} to all the terms present in the L.H.S (Left Hand Side), we get the required result.

Complete step-by-step solution

According to the problem, it is given that (n m )=nCm\left( \begin{aligned} & n \\\ & m \\\ \end{aligned} \right)={}^{n}{{C}_{m}} for any positive integers m, n (with nmn\ge m). We need to prove (n m )+(n1 m )+(n2 m )+......+(m m )=(n+1 m+1 )\left( \begin{matrix} n \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-1 \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-2 \\\ m \\\ \end{matrix} \right)+......+\left( \begin{matrix} m \\\ m \\\ \end{matrix} \right)=\left( \begin{matrix} n+1 \\\ m+1 \\\ \end{matrix} \right).
Let us consider L.H.S (Left Hand Side) and try to prove that it is equal to R.H.S (Right Hand Side).
Let us assume x=(n m )+(n1 m )+(n2 m )+......+(m m )=(n+1 m+1 )x=\left( \begin{matrix} n \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-1 \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-2 \\\ m \\\ \end{matrix} \right)+......+\left( \begin{matrix} m \\\ m \\\ \end{matrix} \right)=\left( \begin{matrix} n+1 \\\ m+1 \\\ \end{matrix} \right).
x=nCm+n1Cm+n2Cm+......+m+2Cm+m+1Cm+mCm\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m}{{C}_{m}} ---(1).
We know that for any positive integer ‘a’, we have aCa=1{}^{a}{{C}_{a}}=1. Using this property, we get mCm=m+1Cm+1=1{}^{m}{{C}_{m}}={}^{m+1}{{C}_{m+1}}=1. Let us use this result in equation (1).
x=nCm+n1Cm+n2Cm+......+m+2Cm+m+1Cm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+1 ---(2).
Let us replace ‘1’ with m+1Cm+1{}^{m+1}{{C}_{m+1}} in equation (2) as we have m+1Cm+1=1{}^{m+1}{{C}_{m+1}}=1.
x=nCm+n1Cm+n2Cm+......+m+2Cm+m+1Cm+m+1Cm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m+1}{{C}_{m+1}} ---(3).
We know that nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}. Let us use this result in equation (3).
x=nCm+n1Cm+n2Cm+......+m+2Cm+m+2Cm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+2}{{C}_{m+1}}.
Let us use the result nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} again.
x=nCm+n1Cm+n2Cm+......+m+2Cm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m+1}}.
This trend continues up to n2Cm{}^{n-2}{{C}_{m}} y using the property nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}which makes the sum of remaining terms is equal to n2Cm+1{}^{n-2}{{C}_{m+1}}.
x=nCm+n1Cm+n2Cm+n2Cm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+{}^{n-2}{{C}_{m+1}}.
Let us use the result nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} again.
x=nCm+n1Cm+n1Cm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-1}{{C}_{m+1}}.
Let us use the result nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} again.
x=nCm+nCm+1\Rightarrow x={}^{n}{{C}_{m}}+{}^{n}{{C}_{m+1}}.
Let us use the result nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} again.
x=n+1Cm+1\Rightarrow x={}^{n+1}{{C}_{m+1}}.
So, we have found that nCm+n1Cm+n2Cm+......+m+2Cm+m+1Cm+mCm=n+1Cm+1{}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m}{{C}_{m}}={}^{n+1}{{C}_{m+1}}.
This tells us that we have proved (n m )+(n1 m )+(n2 m )+......+(m m )=(n+1 m+1 )\left( \begin{matrix} n \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-1 \\\ m \\\ \end{matrix} \right)+\left( \begin{matrix} n-2 \\\ m \\\ \end{matrix} \right)+......+\left( \begin{matrix} m \\\ m \\\ \end{matrix} \right)=\left( \begin{matrix} n+1 \\\ m+1 \\\ \end{matrix} \right).

Note: We should not assume n+1Cr+nCr=n+1Cr+1{}^{n+1}{{C}_{r}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} as it is wrong and is the most common mistake many people commit. We should know that in a combination aCb{}^{a}{{C}_{b}}, ‘a’ and ‘b’ must be a whole number and aba\ge b otherwise, the given problem is wrong. Whenever we get this type of problems, we try to make use of the property nCr+1+nCr=n+1Cr+1{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}} at the required places. If we are given the absolute integer values for ‘m’ and ‘n’, we could have got the result in an integer.