Solveeit Logo

Question

Question: For any positive integer $n$, Let $f_n : [0, \infty) \rightarrow R$ as $f_n(x) = \sum_{i=1}^{n} \tan...

For any positive integer nn, Let fn:[0,)Rf_n : [0, \infty) \rightarrow R as fn(x)=i=1ntan1(11+(x+i)(x+i1))x[0,)f_n(x) = \sum_{i=1}^{n} \tan^{-1} \left( \frac{1}{1+(x+i)(x+i-1)} \right) \forall x \in [0, \infty) then find value of i=15tan2(fi(0))\sum_{i=1}^{5} \tan^2(f_i(0)).

Answer

55

Explanation

Solution

The given function is fn(x)=i=1ntan1(11+(x+i)(x+i1))f_n(x) = \sum_{i=1}^{n} \tan^{-1} \left( \frac{1}{1+(x+i)(x+i-1)} \right).

We can simplify the term inside the tan1\tan^{-1} function. Let y=x+i1y = x+i-1. Then x+i=y+1x+i = y+1. The term is tan1(11+y(y+1))\tan^{-1} \left( \frac{1}{1+y(y+1)} \right).

Using the identity tan1Atan1B=tan1(AB1+AB)\tan^{-1} A - \tan^{-1} B = \tan^{-1}\left(\frac{A-B}{1+AB}\right), we can write 11+y(y+1)\frac{1}{1+y(y+1)} as (y+1)y1+y(y+1)\frac{(y+1)-y}{1+y(y+1)}.

So, tan1(11+y(y+1))=tan1(y+1)tan1(y)\tan^{-1} \left( \frac{1}{1+y(y+1)} \right) = \tan^{-1}(y+1) - \tan^{-1}(y).

Substituting back y=x+i1y = x+i-1, we get tan1(11+(x+i)(x+i1))=tan1((x+i1)+1)tan1(x+i1)=tan1(x+i)tan1(x+i1)\tan^{-1} \left( \frac{1}{1+(x+i)(x+i-1)} \right) = \tan^{-1}((x+i-1)+1) - \tan^{-1}(x+i-1) = \tan^{-1}(x+i) - \tan^{-1}(x+i-1).

Now, we can write fn(x)f_n(x) as a telescoping sum: fn(x)=i=1n[tan1(x+i)tan1(x+i1)]f_n(x) = \sum_{i=1}^{n} [\tan^{-1}(x+i) - \tan^{-1}(x+i-1)] fn(x)=(tan1(x+1)tan1(x))+(tan1(x+2)tan1(x+1))++(tan1(x+n)tan1(x+n1))f_n(x) = (\tan^{-1}(x+1) - \tan^{-1}(x)) + (\tan^{-1}(x+2) - \tan^{-1}(x+1)) + \dots + (\tan^{-1}(x+n) - \tan^{-1}(x+n-1)) All intermediate terms cancel out, leaving: fn(x)=tan1(x+n)tan1(x)f_n(x) = \tan^{-1}(x+n) - \tan^{-1}(x).

We need to find the value of i=15tan2(fi(0))\sum_{i=1}^{5} \tan^2(f_i(0)). First, let's find fi(0)f_i(0). Substitute x=0x=0 into the expression for fn(x)f_n(x): fn(0)=tan1(0+n)tan1(0)=tan1(n)0=tan1(n)f_n(0) = \tan^{-1}(0+n) - \tan^{-1}(0) = \tan^{-1}(n) - 0 = \tan^{-1}(n). So, fi(0)=tan1(i)f_i(0) = \tan^{-1}(i) for i=1,2,3,4,5i=1, 2, 3, 4, 5.

Next, we need to calculate tan2(fi(0))\tan^2(f_i(0)): tan2(fi(0))=tan2(tan1(i))\tan^2(f_i(0)) = \tan^2(\tan^{-1}(i)). For any real number kk, tan(tan1(k))=k\tan(\tan^{-1}(k)) = k. So, tan2(tan1(i))=(i)2=i2\tan^2(\tan^{-1}(i)) = (i)^2 = i^2.

Finally, we need to calculate the sum i=15tan2(fi(0))\sum_{i=1}^{5} \tan^2(f_i(0)): i=15tan2(fi(0))=i=15i2\sum_{i=1}^{5} \tan^2(f_i(0)) = \sum_{i=1}^{5} i^2. This is the sum of the squares of the first 5 positive integers: i=15i2=12+22+32+42+52=1+4+9+16+25=55\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55.

The value of the sum is 55.