Question
Question: For any natural number m \(\int_{}^{}{(x^{3m} + x^{2m} + x^{m})(2x^{2m} + 3x^{m} + 6})^{1/m}dx,(x >...
For any natural number m
∫(x3m+x2m+xm)(2x2m+3xm+6)1/mdx,(x>0) =
A
6(m+1)(2x3m+3x2m+6xm)mm+1
B
6(m+1)(2x3m+3x2m+6xm)m+1m
C
−6(m+1)(2x3m+3x2m+6xm)mm+1
D
6(m+1)−(2x3m+3x2m+6xm)m+1m
Answer
6(m+1)(2x3m+3x2m+6xm)mm+1
Explanation
Solution
I=∫(x3m−1+x2m−1+xm−1)(2x3m+3x2m+6xm)1/mdxPut 2x3m+3x2m+6xm=t⇒6m(x3m−1+x2m−1+xm−1)dx=dtI=∫6m1t1/mdt=6m1m1+1tm1+1+c=6(m+1)1t(m+1)/m+cAgain put the value of t, then we get option (1).