Question
Question: For any integer \(\int _ { 0 } ^ { \pi } e ^ { \sin ^ { 2 } x } \cos ^ { 3 } ( 2 n + 1 ) x d x =\)...
For any integer ∫0πesin2xcos3(2n+1)xdx=
A
−1
B
0
C
1
D
π
Answer
0
Explanation
Solution
Let f(x)=∫0πesin2xcos3(2n+1)x⋅dx
Since cos(2n+1)(π−x)=cos[(2n+1)π−(2n+1)x]
=−cos(2n+1)xand sin2(π−x)=sin2x
Hence by the property of definite integral,
∫0πesin2xcos3(2n+1)xdx=0, [f(2a−x)=−f(x)] .