Solveeit Logo

Question

Question: For any integer k, let \[{\alpha _k} = \cos \dfrac{{k\pi }}{7} + i\sin \dfrac{{k\pi }}{7}\] where \[...

For any integer k, let αk=coskπ7+isinkπ7{\alpha _k} = \cos \dfrac{{k\pi }}{7} + i\sin \dfrac{{k\pi }}{7} where i=1i = \sqrt { - 1} . The value of the expression k=112αk+1αkk=13α4k1α4k2\dfrac{{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {\alpha _k}} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }} is

Explanation

Solution

Convert the complex number from given trigonometric form to Euler’s form in order to make it easier for calculation as cosθ+isinθ=eiθ\cos \theta + i\sin \theta = {e^{i\theta }}. In order to calculate the modulus of the function cosθ+isinθ=eiθ\left| {\cos \theta + i\sin \theta } \right| = \left| {{e^{i\theta }}} \right| it will always be one. Hence, it is quiet clear that the modulus of complex number will always be 1 as by using the concept of z=x2+y2z = \sqrt {{x^2} + {y^2}} . Hence, through the mentioned concept put the values in the above equation and do the summation of the above equation and calculate to obtain the final answer.

Complete step by step solution: As the given equation are αk=coskπ7+isinkπ7{\alpha _k} = \cos \dfrac{{k\pi }}{7} + i\sin \dfrac{{k\pi }}{7}where i=1i = \sqrt { - 1} . The expression is k=112αk+1αkk=13α4k1α4k2\dfrac{{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {\alpha _k}} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }}

Hence, firstly convert all the complex number from given trigonometric form to Euler’s form, which is cosθ+isinθ=eiθ\cos \theta + i\sin \theta = {e^{i\theta }}

Hence, αk=coskπ7+isinkπ7{\alpha _k} = \cos \dfrac{{k\pi }}{7} + i\sin \dfrac{{k\pi }}{7}can also be given as eikπ7{e^{i\dfrac{{k\pi }}{7}}}and so calculating the value of all the expressions as

αk=eikπ7{\alpha _k} = {e^{i\dfrac{{k\pi }}{7}}}

Similarly, αk+1=ei(k+1)π7{\alpha _{k + 1}} = {e^{i\dfrac{{\left( {k + 1} \right)\pi }}{7}}} also calculate the terms for denominators values as α4k1=ei(4k1)π7{\alpha _{4k - 1}} = {e^{i\dfrac{{\left( {4k - 1} \right)\pi }}{7}}} and for the another term will
be α4k2=ei(4k2)π7{\alpha _{4k - 2}} = {e^{i\dfrac{{\left( {4k - 2} \right)\pi }}{7}}}.

Hence, substitute the value in above equation of k=112αk+1αkk=13α4k1α4k2\dfrac{{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {\alpha _k}} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }} and simplify it

\Rightarrow $$$$\dfrac{{\sum\limits_{k = 1}^{12} {\left| {{e^{i\dfrac{{\left( {k + 1} \right)\pi }}{7}}} - {e^{i\dfrac{{\left( k \right)\pi }}{7}}}} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{e^{i\dfrac{{\left( {4k - 1} \right)\pi }}{7}}} - {e^{i\dfrac{{\left( {4k - 2} \right)\pi }}{7}}}} \right|} }}

Take the terms common from both numerator and denominator as

k=112ei(k)π7eiπ71k=13ei(4k2)π7eiπ71 \Rightarrow \dfrac{{\sum\limits_{k = 1}^{12} {\left| {{e^{i\dfrac{{\left( k \right)\pi }}{7}}}} \right|\left| {{e^{i\dfrac{\pi }{7}}} - 1} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{e^{i\dfrac{{\left( {4k - 2} \right)\pi }}{7}}}} \right|\left| {{e^{i\dfrac{\pi }{7}}} - 1} \right|} }}

Cancel out the common terms from both numerator and denominator as

k=112ei(k)π7k=13ei(4k2)π7 \Rightarrow \dfrac{{\sum\limits_{k = 1}^{12} {\left| {{e^{i\dfrac{{\left( k \right)\pi }}{7}}}} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{e^{i\dfrac{{\left( {4k - 2} \right)\pi }}{7}}}} \right|} }}

Hence, as discussed that for the concept of modulus ofcosθ+isinθ=eiθ\left| {\cos \theta + i\sin \theta } \right| = \left| {{e^{i\theta }}} \right| such term will always be 11.

As eiθ=cos2θ+sin2θ=1=1\left| {{e^{i\theta }}} \right| = \sqrt {{{\cos }^2}\theta + {{\sin }^2}\theta } = \sqrt 1 = 1

Hence, =k=1121k=131 = \dfrac{{\sum\limits_{k = 1}^{12} 1 }}{{\sum\limits_{k = 1}^3 1 }}

As, we know that i=1n1=n\sum\limits_{i = 1}^n 1 = n

So, applying the concept of summation in the above equation it can be simplified to

=123 = \dfrac{{12}}{3}

Hence, on dividing the above values our answer will be obtained as

=4 = 4

Hence, k=112αk+1αkk=13α4k1α4k2=4\dfrac{{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {\alpha _k}} \right|} }}{{\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }} = 4

Note: A complex number is a number that can be expressed in the form a + bia{\text{ }} + {\text{ }}bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation i2=1{i^2} = - 1. Because no real number satisfies this equation, i is called an imaginary number.